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Abstract

FUNDAMENTAL WORK TOWARD AN IMAGE PROCESSING-EMPOWERED
DENTAL INTELLIGENT EDUCATIONAL SYSTEM

By Grace Olsen, Ph.D. Student

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2010

Director: Susan S. Brilliant
Associate Professor, Department of Computer Science

Computer-aided education in dental schools is greatly needed in order to reduce the need for

human instructors to provide guidance and feedback as students practice dental procedures. A

portable computer-aided educational system with advanced digital image processing capabilities

would be less expensive than current computer-aided dental educational systems and would also

address some of their limitations. This dissertation outlines the development of novel components

that would be part of such a system. This research includes the design of a novel image processing

technique, the Directed Active Shape Model algorithm, which is used to locate the tooth and drilled

preparation from a digital image, and also to measure the exact size, shape and location of the drilled

preparation in relation to the expected preparation. The use of statistical measures taken from the

digital images to provide feedback about the smoothness and depth of the dental preparation is

also detailed. This research also includes the design and testing of a posture-monitoring component

viii
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for a portable educational system. Maintaining proper posture is critical for dental practitioners,

because poor posture can affect not only the dental practitioner’s health, but also the quality of

the practitioner’s work. The algorithms and techniques designed for use in the dental education

support system could also be applied in the design of computer-aided educational systems for the

development of procedural skills in many other fields, and in the design of systems to support

practicing dentists.

ix
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Novelties and Contributions

A portable, computer-aided educational system with advanced digital image processing capabilities

and an audio user interface would address the problems with current computer-aided dental educa-

tional systems. Clinical labs for the practice of dental procedures are dependent on the availability

of instructors for feedback, and therefore students have only set lab hours to practice hands-on

techniques. Computer-aided educational systems address this to some extent by allowing the stu-

dents to see what they have drilled as a three-dimensional graphical model. Due to the limitations

and expense of these systems, however, students at dental schools that use these systems still have

only limited practice time. Another major drawback of existing dental intelligent tutoring systems

(dental ITSs) is that they heavily rely on a graphical user interface. When students must look

away from their work to consult a computer monitor to determine if they are doing a procedure

correctly, they break their concentration. More importantly, none of the existing computer-aided

educational systems provides students with real-time quantitative assessment of the work based on

the processing of the images that can be captured during the process. An ideal dental ITS must be

able to follow the progress of the dental student through the steps of a dental procedure, processing

and evaluating in real time the quality of the student’s work. This dissertation outlines a number of

novel components that can be used in the design of such a system. This research has identified and

addressed new and challenging problems in intelligent tutoring system design and image processing.

Three major components of the system are described:

∙ A novel variation of the active shape modeling algorithm, called Directed Active Shape Mod-

eling (DASM), is outlined in Chapter 3. This algorithm is used to identify within a color

x
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digital image the drilled preparation on the surface of a tooth, and measure the change in

size, shape and location of the preparation in relation to the tooth surface to provide quanti-

tative feedback to the user. The DASM algorithm has advantages over the traditional ASM

algorithm for this application, including:

– Use of color intensity values instead of grayscale values when creating the gradient profiles

for identifying best fit landmark locations within an image. This expedites the search

for the preparation and the tooth surface within the image, and increases the chance of

convergence to the actual shape of the preparation and the tooth surface.

– Use of interactive machine learning, so that the algorithm interactively receives feedback

from the user, improving the training speed and accuracy.

∙ The novel use of statistical and signal processing measurements of color digital images of

the surface of the tooth and the drilled dental preparation to extract data concerning the

smoothness and depth of the dental preparation are defined in Chapter 4. Machine learning

techniques are used to classify the smoothness and depth of the preparation, using the data

extracted from the images. The application of these techniques to identify caries on the surface

of teeth increases accuracy and allows for the detection of caries that may go unnoticed with

traditional detection techniques.

∙ The design and testing of a portable posture-monitoring system using on-body sensors and

machine learning techniques is outlined in detail in Chapter 5. The use of on-body sensors

to monitor posture in a setting for dental students and dental professionals is novel for this

application, and may be used in other fields and for other applications.

xi
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The use of the proposed system in pre-patient-care dental training facilities will not only address

the ongoing problem of decreasing numbers of faculty members in US dental schools, but also will

give dental students more practical training with immediate feedback. The additional practical

training can be expected to improve their technical skills when they enter a clinical setting and

therefore improve the quality of their work, which will directly benefit their patients. The proposed

system could also be used in a clinical setting, increasing the students’ and patients’ confidence

level by providing a mechanism to prevent physical damage to biological structures. The use of the

posture monitoring aspect of the system can reduce the risk of injury to the dental student.

The algorithms and techniques designed for this system could also be applied in the design of

computer-aided educational systems for many medical fields in which the development of procedural

skills is difficult, time-consuming and requires costly expert instructor time. They could also be

applied in the design of systems to support dental practitioners in detecting and monitoring the

progression of caries damage, and in maintaining healthful posture as they work.

xii
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CHAPTER 1 Introduction

1.1 Motivation

The purpose of this research is to address some of the major challenges that exist in the development

of a dental intelligent tutoring system to assist dental students in developing the analytical and

psychomotor skills needed to perform dental procedures. The need for computer-aided educational

systems in dental education is a well documented problem [13], [55], [47], [54], [84].

Only a handful of dental schools currently make use of computer-aided systems. One of the

most advanced systems currently in the market is DentSim. In school where DentSim is available,

students begin their training using DentSim and then advance to a laboratory setting that provides

no automated assistance. This state-of-the-art technology has been successful in increasing the

amount of time students can practice and therefore in helping them to develop the basic technical

skills needed for drilling teeth. However, surveys have shown that dental students have such a heavy

classroom workload that they learn theoretical material through rote memorization, and state that

they plan to learn the relevance of what they have memorized only when they get into clinical

practice [70]. The educational system to which this research contributes would process digital

images captured in real-time during a dental procedure and give auditory instructions, hints, and

feedback to the dental students as they work. This would give dental students an earlier opportunity

to integrate their classroom and theoretical knowledge with laboratory practice.

Many dental schools around the country and in Europe use automated virtual reality systems.

One of the most advanced is DentSim, a system that allows dental students to observe a three-

1
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dimensional image of their work as they practice cavity preparation. DentSim is a stationary system

that has a patient mannequin with practice teeth, instrumentation for drilling preparations, and

an infrared camera and diodes which measure the exact location in space of both the drill and

the practice teeth and mouth. With this information, the system can calculate exactly where the

student has drilled on the tooth. The system can show on its computer monitor a three-dimensional

image of the tooth and drilled preparation, and give real-time graphical feedback to the students as

they work. The system can compare the difference between the expected size, shape and location

of the preparation the student is working on and the actual preparation the student is drilling,

and show this difference to the student on the computer monitor with a graphical representation

of both the actual and ’ideal’ expected preparations. The work of the student can also be saved

and graded, and this information can be used by the dental instructors to track the students’

progress [13], [55], [47], [54], [84]. Although DentSim provides many advantages and benefits, there

are some drawbacks to the system. For students to learn about the status of their preparation,

they have to look away from their work to examine the graphical output on the computer monitor

of DentSim. Although DentSim does give some auditory output when the student may drill outside

the boundaries for a correct dental preparation, the auditory feedback to the students a digital beep,

and does not descriptive information to the student. For the student to learn about the progress

of their drilling, they have to look away from their work, which is disruptive and time-consuming.

The dental educational system proposed in this dissertation would not disrupt the work of the

student as would a graphical user interface, because unlike the graphical user interface, it would

not require the student to look away from the dental preparation. The proposed system would

therefore act as a needed intermediary step between attention-disruptive instructional systems

such as DentSim system and the clinical environment in which there will likely be no assistance at

all.



www.manaraa.com

3

The dental educational system outlined in this dissertation also contains a portable posture-

monitoring system, which would address the need for additional posture monitoring and guidance

in dental education. Chapter 2 outlines in detail the needs of dental schools for additional posture

education and monitoring of the posture of dental students, as incorrect posture and positioning is

a serious health issue for dental practitioners [97], [69].

1.2 Image Processing Enabled Dental Educational Systems

A practical design for a dental educational system would make use of a camera to record the

student’s progress and address one aspect of the image processing needed for such as system. To

analyze digital images of the student’s progress, a number of image processing techniques would be

needed. To monitor the progress of dental students as they drill a preparation, the system would

have to locate both the tooth and the preparation within the image, and quantitatively measure

the size, shape and location of the preparation from frame to frame. To address this challenging

problem, a modified version of an Active Shape Model (ASM) segmentation algorithm has been

devised. This algorithm, referred to in this dissertation as a Directed Active Shape Model (DASM)

algorithm, addresses some of the weaknesses in the ASM method with respect to the needs of this

particular application.

The DASM is designed to be able to measure the difference between the dental preparation

drilled by the student and the expected preparation, allowing the ability to give quantitative feed-

back to the student. The DASM also has a number of other advantages over the traditional ASM

algorithm. First, it uses color pixel intensity values instead of grayscale intensity values to create a

statistical model used to help locate the tooth and preparation in the color image. This additional

information increases the accuracy of the DASM over the ASM.

The DASM also makes use of an interactive machine learning algorithm, used during the initial
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creation of the training model for the algorithm. The ASM algorithm traditionally requires user

input for the placement of every landmark used to help model the segmented shape, which can be

tedious and time-consuming for the user and introduces the possibility of user error. The DASM

requires less input from the user, partially automating the placement of the landmarks on training

image to create the model. This decreases user time and increases accuracy through the reduction

of user error. The outline of the DASM and the results of testing the new algorithm on multiple

types of dental preparations is fully outlined in Chapter 3.

1.3 Image Processing of Color Images for Surface Texture in Teeth

Once the drilled preparation has been identified and the size and shape measured, another feature

that can be extracted using image processing techniques is texture. The texture of the drilled

preparation would be informative to dental students and instructors because the smoothness of the

preparation is an important aspect of a correctly drilled preparation. Texture has also been used

to help identify depth in single two-dimensional images, and this texture information could be used

in this application to measure the depth of the preparation. To ascertain the ability of the novel

image processing algorithm to measure texture on the surface of teeth from color images, it was

tested by identifying carious regions within color images of the buccal surfaces of teeth. Research

has shown that over 90% of all adults experience dental caries, and the early diagnosis of the

carious lesion has become an important aspect of maintaining dental health. Advanced diagnostic

and imaging devices can be used to identify tooth damage due to caries compensating for the low

sensitivity (high false negative) rate of visual and visual-tactile inspection by dentists. However,

existing systems have such a high false positive rate that dentists often do not rely on the results,

instead relying on traditional visual or visual-tactile inspection. Of the existing computer-aided

diagnostic systems, few use digital image analysis for detection and diagnosis. The feasibility of
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using advanced image processing techniques and the use of multiple machine learning methods to

identify caries accurately from digital images is demonstrated in Chapter 4.

1.4 Portable, Real-time Posture Monitoring Using Machine Learning Techniques

Along with work towards the development of image processing techniques for a computer-aided

dental educational system, this paper outlines the development and initial testing of a novel system

to measure and monitor posture in dental students, addressing another existing problem identified in

dental education. Over 80% of dentists report having some type of back, neck or shoulder pain [97].

Research has identified significant costs linked to a very high rate of Work-Related Musculoskeletal

Disorders (WMSDs) associated with poor ergonomic positioning in dentists. The annual costs

of WMSDs across all occupations are estimated at between 13 and 54 billion dollars [30]. Little

research has explored the design of portable, inexpensive, non-invasive and unobtrusive real-time

systems to measure posture. The details of this system and the results of initial testing of the

prototype are further explained in Chapter 5 of this dissertation.
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CHAPTER 2 Previous Work

2.1 Computer-Aided Education in Dentistry

The most prominent system in computerized education is the Intelligent Tutoring System (ITS).

An ITS can be considered an expert system that has a number of different models, each model

representing either the knowledge base (or the “expert), the student, or the tutor [3]. The most

basic ITSs simply compare the student model (based on the input from the student) to the expert

model, and when the student deviates from the expert the system will provide information or hints

based on what a real tutor would do, according to the tutor model. Recently the usefulness of the

ITS has been called into question. In the 1980s and 90s most ITS systems focused on one model

for teaching, that of an expert tutor correcting the work of a single student [3]. Others criticize

ITSs for their expense and training time, both for instructors and students [48]. Other educational

paradigms that include group work, students instructing each other, and student self-exploration

and self-correction have not been widely explored [3]. Most traditional ITSs focus on correction,

and only recently has work been done to explore aspects of education beyond simple correction of

mistakes.

Another criticism of ITSs is that most do not address the important social aspects of tutoring;

they do not deal with the social cues given by a real tutor nor do they pick up on the social cues

given by the student. Research has shown that even people untrained in tutoring or teaching can

be very effective tutors even if they don’t follow any formal method. The ability to follow and use

complex social cues would greatly increase the effectiveness of an ITS [23]. Some work has been

done to address this problem; one interesting application is an ITS with auditory user interface

6
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(both giving and receiving verbal input) that analyzes the speech of the student to measure for

stress or frustration [31], [99]. Systems such as I-MINDS make use of multiple tutoring agents to

facilitate group learning either within a classroom or for distance learning. The system uses both

student and teacher agents to help the students form buddy groups and the student agent will even

ask the teacher questions if the group is struggling [33].

Research has shown that ITSs are most useful for straightforward learning of procedural tasks

(such as solving mathematical problems) [99]. Since the tasks the dental students would be per-

forming are procedural in nature, an ITS would be a good fit. However, challenges arise in the

fact that the tasks dental students learn in the laboratory are physical and three-dimensional, and

do not involve a computer interface. Most of the existing research in ITSs has focused on systems

with a relatively simple graphical user interface [31]. A computer-aided educational or tutoring

system for dental education must be able to monitor the progress of a student through a procedure.

Because there is no computer interface when students are practicing the skills of cavity preparation,

there is no easy way to determine where the student is in the process of cavity preparation, nor is

there a straightforward way to analyze the quality of the student’s work. There are a number of

existing systems that deal with learning physical tasks or learning in physical environments, such

as DentSim for cavity preparation [55], “over the shoulder (OTS) instruction for anti-war craft sim-

ulation [33], and palpatory training with a virtual haptic back [43]. However, these systems have

direct hardware connections from the student to the ITS. Most of these systems also involve complex

and expensive hardware. Optoelectronic and electromagnetic systems have been used in dentistry

(during dental surgery to monitor the positions of patients and drills) [13], [55], [47], [54], [84], and

LED sensors and optical tracking have been effective in monitoring the location of the student’s

drill and the acrylic practice teeth in DentSim [55]. However the size and expense of these systems

may be prohibitive for private practice or in smaller dental schools. The use of a digital camera
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and image processing to monitor student progress is significantly less expensive and can be easily

made portable.

2.2 Image Processing

Image processing plays an essential role in this research. To create the components of the computer-

aided dental education system outlined in Chapter 1, there are a number of goals to be met with

respect to the image processing of the digital images which serve as input to the system. These

goals are:

∙ Locating and identifying the tooth surface on which the dental preparation is being drilled.

∙ Identifying and monitoring the location (in relation to the tooth surface), size and shape of

the dental preparation being drilled, and classifying the preparation as being within or out of

the bounds of an acceptable preparation in terms of the size, shape and location.

∙ Classifying the texture and depth of the dental preparation as being within or out of the

bounds of an acceptable preparation in terms of the smoothness and depth.

To accomplish these image processing goals, a number of state-of-the-art image processing tech-

niques are be used, and novel techniques to solve the problems outlined above are devised. The

main image processing techniques used in accomplishing these goals are described below.

2.2.1 Registration

One of the main challenges of video processing is registration, which is the aligning of sequential

images of the same scene. Image registration is used in a number of fields, including remote

sensing (the gathering of information about an object through the use of a number of devices that

are not in close proximity to the object), cartography, medical image analysis, computer vision
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and video surveillance [35]. Some current techniques used in registration are cross-correlation,

Fourier transforms, mutual information theory, clustering, Chamfer matching, invariant descriptors,

relaxation techniques, and wavelet transforms [108], [64], [89].

2.2.2 Segmentation

An essential step in almost all image processing applications is the ability to find and isolate areas

of interest within an image. Segmentation makes use of low level image processing techniques

such as edge and line detection to determine boundaries between areas in an image. Segmentation

allows for the identification and isolation of a feature within the image; it also may be used to

determine the size and shape of a feature [35], [89], [72]. Color segmentation presents its own unique

challenges. Although color images represent more information than gray-level, the algorithms for

segmentation of color images are computationally much more complex than segmentation of gray-

level images. For this reason, most research on color segmentation has been done within the

past ten years as the computational ability of computers has increased [19]. Some of the major

techniques used in color segmentation are histogram thresholding, splitting and merging techniques,

region growing techniques [19], and supervised and unsupervised machine learning techniques such

as clustering [61], neural networks [61], [22], and support vector machines [109]. There is no

uniquely superior technique, as each application presents its own specific challenges. Segmentation

of sequential images, as in video, is even more complex [53].

2.2.3 Active Contour Models (Snakes)

Active contour models (ACMs, or snakes) employ model-based methods that use a prior model to

try to find the best match for the model within a test image [17]. In comparison to bottom-up

image processing techniques, these use a top-down approach, which make use of the identification of

local structures (edges, points and other low-level structures in the image) which are assembled into
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groups to find objects [16]. The ACM algorithm creates, using training examples, a model of the

shape that uses two opposing energy terms, an internal term which works towards smoothing the

curve, and an external term which moves the curves towards image features, to locate the outline of

an object. ACMs are good for amorphous objects like cells, but they tend not to perform well with

objects that have a known shape. The weak constraints of the model tend to provide convergence

towards local minima [16].

2.2.4 Active Shape Models

Traditionally, like snakes, active shape models (ASMs) are a top-down segmentation technique [16],

used to locate a particular shape within an image. ASM has found popularity as a model-based

method because it uses statistical methods to find the best match to the model, which has benefits

over other types of model-based segmentation because it is flexible, and expert knowledge is held

within the statistical model. Through the use of landmarks, ASM creates a model that is compact

but still holds enough information about the shape so that it can be found in new images [16].

One of the main advantages of using ASM is that it is robust to noise. ASM works best with

shapes where consistent and distinguishable landmarks can be defined; it does not work well with

amorphous shapes. ASM is used often with complex image processing segmentation tasks (Cootes

et al. uses images of faces and MRIs of the knee as examples to outline their original ASM model)

because with these types of applications the shapes are particularly difficult to represent with

primitives [16]. The exponential combination of the large number of primitives makes a bottom-up

approach computationally challenging if not impossible [16].

The shape to be segmented from an image has a number of feature landmarks placed around

the border of the shape. The landmarks are manually placed on the shape in a number of training

images. The general model for the shape is created by training the system to learn the shape from
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the training images based on statistical methods. With the training, the model learns the maximum

deformation for each landmark that still fits within the model. This model can then be placed on

a new image and deformed to try to fit to a shape in the new image. The growth or deformation

of the model is repeated until convergence is reached [17], [16].

The ASM algorithm has a number of limitations. The landmarks that define the model must

be identified manually in the training images, and the initial placement of the model within the

test image is also done manually. The model itself is also limited by the number of training images.

The training set must exhibit all of the variation that may be expected in test images, or else the

model will be too narrow in scope and unable to correctly find shapes outside of the variation held

within the statistical model [17], [16].

ASM differs from other types of model-based segmentation in a number of ways. A key difference

is the definition of the fit function used to fit the model to the best fit shape within the test

image [16]. Fitting the ASM model to the shape within the test image is based on the minimization

of the cost function. For ASM, the cost function is defined as an error measure, which is the

distance between each landmark and the best fit point along the strongest edge perpendicular

to the landmark [16]. Other model-based methods, such as as Active Appearance Models, use

different fit functions, looking at low level structures in the images instead of edges, or textures

inside and/or outside of the shape [16]. There are some limitations to the use of this fitness function.

Without prior knowledge of the general location of the target shape within the image, the landmarks

identified by the ASM algorithm might be locally optimal landmarks for that area of the image,

but not the globally optimal landmarks (where the shape is actually located in the image). With

only locally optimal landmarks, the ASM would not find the correct location of the shape within

the test image [16]. Local optimization can be used instead. There have also been extensions on

the ASM algorithm to address issues such as warping of the image using thin plate splines [18].
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Active shape modeling and its variations (including smart snakes, active contour modeling, and

active appearance modeling) have been applied to medical image processing [39], [57], [103], [90], [12], [81], [6].

There has even been some research on the use of active shape modeling theory in dental applica-

tions [38], [100], [63], [2], [41], [95], [60]. This research has focused mainly on the development of

dental prostheses [60] and forensic applications [42], but there has been some early research with

x-ray images to segment caries lesions [39]. However, the focus has been on segmenting anatomical

structures in medical images such as CTs, MRIs and x-rays, limiting image processing to gray-scale

images [17], [16], [38], [100], [63], [2], [41], [95], [60], [42], [39]. Little research has been done on the

use of active shape modeling to segment biological structures within color digital images [57].

2.2.5 Measuring Depth in 2D Images

One of the most challenging aspects of image processing is the analysis of three-dimensional as-

pects of a two-dimensional image. Three-dimensional characteristics of a dental preparation, such

as depth and angle, can be estimated only when a two-dimensional image is properly analyzed.

3D modeling research has been done within such diverse fields as computer vision and robotics,

remote sensing, virtual reality development, and archeology [90], [12], [81], [6], [85], [78]. Remote

sensing research has created techniques to determine the angle and slope of digital elevation mod-

els [49], [101], [87]. What is more challenging, however, is the creation of 3D models from 2D images

without any prior knowledge of the 3D geometry. There are two main approaches to 3D modeling

from multiple 2D images. The first uses a series of calibrated images of the object to be modeled.

This means that the location of the camera is known from one image to the next. The second

approach uses uncalibrated images, but again requires multiple images taken from multiple angles

of the object to be rendered [90], [87]. Recent work has been done to determine depth from multiple

images (or video) without prior knowledge of camera location or images from multiple locations,
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but it relies on identifying objects of known height within the images [87]. Another challenge is

3D modeling of rounded surfaces (such as teeth). However, work has been done on 3D modeling

of smoother surfaces, such as skin and faces, with techniques such as non-rigid factorization [12].

Much research has focused on using specialized hardware to capture the 2D images for the extrac-

tion of 3D features; however using specialized equipment such as a plenoptic camera [68] is not

practical for this application.

2.3 Medical and Dental Image Processing

2.3.1 Computer-Aided Caries Detection and Diagnosis

Ninety percent of all adults have carious lesions [105]. Research has shown that the rate of caries

growth has changed due to advances in dentistry. Dentists are now able to diagnose and treat caries

early, allowing the use of preventative, non-invasive measures [105], [44]. Research has also shown

that visual inspection or visual-tactical inspection has very low sensitivity rate; that is, human

inspection alone misses a high percentage of caries [105], [44], [46]. For these reasons a great deal of

research has gone into the development of computer-aided caries detection and diagnosis systems.

Most research has focused on developing systems that use advanced imaging tools, such as laser

or light florescence [5], [4], [79], digital radiography [105], fiber-optics transillumination [105], and

electrical resistance [51] to detect and measure tooth damage due to caries. Although these systems

can visualize demineralization that cannot be seen visually, the low specificity rate (high rate of

false positives) of all of these systems has led experts to agree that these tools cannot replace visual

inspection for caries detection; instead they should be used to augment visual or visual-tactile

inspection done by a dentist [105], [5], [4], [79], [51]. With florescence techniques, it is difficult

to differentiate between natural demineralization and demineralization that is caused by a carious

lesion. While dentists use these systems to augment their diagnosis, they are given the difficult
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task of having to determine for themselves the accuracy of the detection and diagnosis feedback

from these systems [105], [4], [82].

Most of the research done in computer-aided caries detection focuses on the development of

advanced imaging techniques [105], [79]. Many of the systems provide only a different means

of visualization, but some (such as DIAGNODent and DIFOTI) allow for data about the caries

detection and tooth damage to be recorded digitally [79]. One reason DIAGNODent is popular

in clinical settings is the ability of the system to rate the detected caries damage quantitatively.

This allows the comparison of the numerical value of a diseased area on a tooth from one dental

visit to the next. However, a numeric value representing the demineralization of the tooth area the

device is placed on is the only feedback from the DIAGNODent system. Although it is popular,

DIAGNODent’s procedural use is complex and time-consuming [82]. DIFOTI, a system that makes

use of fiber-optic transillumination, allows for the recording of digital images of the teeth being

examined. As in many of the available techniques, DIFOTI allows for more in-depth visualization

of teeth, but the dentists still have to interpret the images they see [79]. Currently, no computer-

aided systems exist that can provide easily understandable quantified information about tooth

damage due to caries. Existing systems mainly provide imaging information to dentists about

carious lesions and suffer from lack of low specificity, and most have a high learning curve and

complex procedures for their use, which limit their helpfulness [105], [5], [79], [82]. One of the goals

of this research is to provide easily understood quantitative feedback about the presence and extent

of the carious lesion, allowing dental professionals to be able to interpret and integrate data from

the system in a quick and reliable manner.
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2.3.2 General Image Processing in Dentistry

Image processing has been proven to be an effective tool in the field of dentistry. To date, the

main applications of image processing in dentistry are either as navigational tools or for diagnostic

purposes [26], [19], [7], [58], [102], [75], [11], [36], [59], [71], [24]. No research has been done on the use

of image processing as input to an ITS or other computer-aided dental educational system. Image

processing techniques such as edge detection [58], [35], modeling [58], [102], [11], [24], template

matching [102], segmentation [58], and thresholding [24] have all proven to be effective and could

also be used in a dental ITS to monitor student progress. One of the major goals for using image

processing in a dental ITS is to determine what step the student is currently working on within the

procedure. Determining whether the dental drill or other instruments are in the field (the mouth

of the patient or the mouth of the practice head) is an important first step towards this goal. Edge

detection has been used effectively in other dental applications of image processing [108], and can

be used to determine the presence of dental instruments in an image of a dental procedure. The

analysis of CT scans as a navigational tool for dental implantology (dental implant surgery) is a

widely studied field, with many commercial software applications in existence [19], [7], [53], [17].

CT scans are used to create a 3D or 2D visualization for dental surgeons by using image processing,

graphics and HCI (human-computer interface) techniques [108], [72], [59], [24]. Current research

makes use of systems that are semi-automatic, that is, experts can manually extract the areas

of interest for measurement [19]. All of this helps the expert figure out exactly where to place

the implant or perform surgery on oral tissues and how to properly design the dental implant

prosthesis. Recent work has shown the safety benefits of using computer-aided navigation. One

teaching hospital analyzed the results of the use of such a system over nine years, and discovered that

surgery was completed in less time and was safer, with no sleeping [submerged] implants [26]. There
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are multiple commercial software applications for visualization for dental implants, including IGI,

DentaScan, MedScannII, VISIT, VirtualImplant and SIM/Plant [26], [19], [7], [75], [36], [24], [14].

VISIT, for instance, uses CT scans and image analysis to help dental surgeons plan dental implant

surgery, and can use post-op CT scans to determine success of placement of the implants [26].

The use of CT images to create a 3D model to guide dental implant surgery has been widespread

in teaching hospitals within the past five to ten years, but this approach is not widely used in private

practices [102]. Computer-aided navigation is an intensive process needing a navigation system,

software and reference tools. Recently researchers have been trying to create systems to make

image-guided implant surgery more widely accessible [19]. One recent paper has demonstrated the

use of image processing to do registration of the mold of the mouth, with a reference frame to

make a 3D model, so experts can plan the surgery. The system can also create templates with

expert input. This research showed an increase in accuracy and a decrease in surgical preparation

time [26], [102]. Systems such as CEREC [74] make use of infrared cameras to create a 3D model

of a dental preparation, but require input from the dentist and have a high learning curve. Most of

the current dental image processing systems make use of commercial software systems and require

user input.

2.4 Interactive Machine Learning and User Interface Design

There are many challenges in image processing. Despite the large body of research in the application

of image processing in medicine, there are few successful clinical applications in practice [56]. One

of the reasons for the lack of successful medical image processing software systems is the challenge

of creating accurate, repeatable, reliable, user-friendly, quick, generalized and robust systems. One

of the main causes for the lack of generalization, speed and ease of use for image processing is the

parameterization of image processing and machine learning techniques [56].
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For image processing applications, machine learning is used to classify either low level aspects

(such as pixel values) or high level aspects (such as objects or regions) of the image [35]. For

example, an algorithm may be trying to classify pixels in a digital image as either inside of or

outside of a region in the image. In classical machine algorithms, users would have to label training

data (pixels in sample images, for example) that would be used to train the algorithm during

a lengthy training session. The algorithm would then be tested against new testing data (again

labeled by the user) to see if the algorithm could correctly identify which pixels were within the

region in the image. If the algorithm was not accurate, the user would have to manually adjust

learning parameters, and begin again. This example demonstrates why classical machine learning

techniques are difficult to implement in clinical image processing applications. Interactive machine

learning (IML) addresses these issues by changing the paradigm of classical machine learning [27].

Instead of having user input only in the beginning (labeling training data for the learning phase

of the algorithm) and end (analysis of results, adjusting parameters to train the classifier again) of

the machine learning process, interactive machine learning allows for iterative input from the user

to train and adjust the algorithm quickly [27].

IML is a relatively new technique, and it has been used primarily in image processing appli-

cations. The “Crayons system, based off a decision tree classifier, allows users to create an image

classification system interactively by “drawing on an image to help the system differentiate between

objects or areas (classes) within the image [27]. There are no traditional training and testing phases

to train the algorithm; if the system incorrectly classifies part of the image, the user can immedi-

ately draw more on the image to correct the system. Examples of IML include systems that have

been used to identify roads in satellite images (using a version of support vector machines) [106],

help non-programmers design computer vision programs (which has users test multiple machine

learning algorithms via a quick iterative method to determine which is best for their particular
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application) [67], design an email sorting classifier [91], design sensor applications [40], and create

various systems for content-based image and video search engines [91], [29]. The idea of using a

form of IML to help perform image processing in medical images goes back as far as 1999, but thus

far evidence of the formal IML paradigm applied to the design of an image processing system for

medical or dental clinical applications has not been found in the literature.

2.5 Posture Monitoring Using On-Body Sensors

Current research has shown that poor posture due to lack of training in correct ergonomic posi-

tions while working with patients is the greatest cause of work-related musculoskeletal disorders

(WMSDs) and loss of productivity for dentists [94]. WMSDs include disk herniation, tension neck

syndrome, muscle necrosis, and chronic back pain. Injuries can be costly, both in terms of medical

expense and lost time, and in some cases WMSDs have been cited as the reason for early retirement

or career change in the dental occupations [97]. Not only can WMSDs lead to pain and damage in

the dentist, certain disorders such as carpal tunnel syndrome can lead to clumsiness, which could

put patients at risk [86]. In general, posture has been shown to be associated with the quality of

a dentist’s work because improper posture can lead to stress, exhaustion, and clumsiness [86]. If

the dentist’s body is in an ergonomically correct position, the weight of the body falls naturally

on the disks in the spine. However, if the body moves so that the natural curves of the spine are

distorted, the weight of the body is moved to the muscles, tendons and tissue surrounding the

spine. This is called a static posture, and staying in a prolonged static posture is a known cause

of various WMSDs. One way to relieve the pressure on one muscle group is to change positions so

that another muscle group can take over the task of supporting the weight of the body, giving the

first group time to rest [98]. But studies have shown that the five main types of tasks performed

by dentists (examination of the teeth, cleaning or polishing, scaling, drilling and filling) are very
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similar in terms of movement of the body [28]. Because all of these tasks are performed in nearly

identical body positions, dentists are unlikely to change position even when moving from one task

to another and therefore are not resting these stressed muscle groups.

Over the past fifty years some changes have been made in the way dentists work. These changes

were implemented in an attempt to help dentists, but some have in fact been harmful to their

health. In the 1940s approximately 65% of dentists reported back pain. At that time most dentists

worked standing up, and they did not work with assistants. Now almost all dentists work sitting

down most of the time, and most practice what is called “four-handed dentistry where the dentist

works with a dental assistant. These techniques were devised to help dentists to relieve back pain

and to increase productivity. However, although four-handed dentistry does allow the dentist to

be more productive, it has not been successful in relieving work-related pain, probably because

it both increases working time and reduces the number of changes in the dentist’s position [97].

Currently, over 80% of dentists report having some type of back, neck or shoulder pain [97]. The

annual costs of WMSDs across all occupations have been estimated to be between $13 and $54

billion dollars [30]. The proposed system has the potential to be modified to help not only dental

professionals, but practitioners of any occupation associated with a high risk for WMSDs.

Much research has been done in the field of dental ergonomics, but little new technology has

emerged from this work. Three common approaches are used in an ergonomic assessment of safety

issues: 1) subjective judgments such as those measured via surveys or questionnaires, 2) quantitative

measures such as those resulting from use of an EMG (electromyography) to record muscle activity,

and 3) subjective observation such as that of an ergonomic expert watching a recorded video

of a dental clinician and noting changes in posture [28]. Most research into the ergonomics of

dentistry has used subjective judgment and observation, because current methods for obtaining

quantitative measurements are expensive and intrusive. The existing work involving qualitative
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judgment has shown overwhelmingly that there is a connection between WMSDs and dental work.

An early, yet compelling, study of dental hygienists in Ontario showed that 7% of hygienists reported

via a questionnaire that they had been diagnosed with carpal tunnel syndrome (CTS), whereas

the likelihood of contracting carpal tunnel syndrome in the general population is less than one

percent [10]. Because the dental procedures performed by hygienists use the same posture as those

done by dentists, this research has relevance to both dentists and dental hygienists.

One of the newest innovations in the study of the posture of dentists and dental hygienists is

the Dental Operator Posture Assessment Instrument (PAI). The PAI is a scale that can be used

by ergonomic experts or others to measure the posture of a dental professional over a set period

of time (usually a five-minute time period) [10]. This study addressed an important question

in ergonomic dental research. Although a proper position for dentists or hygienists is defined in

textbooks and in dental school, the concept of a range of acceptable and unacceptable positions had

not previously been investigated. Although research has been done for decades on the ergonomics of

dentistry, most research has focused on identifying the causes of WMSDs. Research on correcting or

preventing WMSDs has focused on the redesign of dental equipment and chairs [69], giving dentists

instructions on how to stretch and strengthen their core muscles [98] and recommendations that

the work of a dentist needs to be entirely restructured to include more breaks [97]. No work has

focused on methods to correct the poor posture of dental professionals in real time as they work.

Although correct and incorrect postures have been identified by researchers, dental students are

not always trained effectively to recognize the difference. Furthermore, it can be difficult for a

dentist to remember to stay in a neutral position during clinical practice even with proper training

in recognizing appropriate positioning. In fact, research has shown that dentists are not likely even

to take the time to adjust their own chairs or the height of the patients’ chairs, two factors that

are known to greatly affect the strain placed on the back [69].
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There are two major approaches to studying the movement of the human body. One is the

use of video recordings and motion capture. By identifying either visual markers placed on the

body or the silhouette of a person, these systems analyze and classify different types of movement

or placement of the body. The other main approach in human motion research is the use of on-

body sensors. Since the goal of this research is to develop a portable and real-time system to

measure posture, the focus is on the use of on-body sensors. These have the portability advan-

tage over motion capture and video analysis because they do not require stationary systems with

video cameras. They also require less computational time because the outline of the body does

not have to be determined using computationally-intensive image processing techniques. However,

these systems can become very complex, with increased computational time and invasive mea-

suring systems; recent research into complex posture-measuring systems shows that attempts to

increase performance speed had a significant impact on the level of error [76]. Most of the classi-

fication techniques in the current motion analysis research are complex, relying on a combination

of machine learning theory, statistical analysis, and intensive preprocessing and feature extrac-

tion [104], [62], [76], [66], [107], [34], [65], [62], [45], [73], [25], [66]. Although some systems may

have very high accuracy using these methods, in most cases they do not allow for real-time classifi-

cation. Most research has focused on using complex filtering techniques, such as FFT (Fast Fourier

Transformation) and DWT (Discrete Wavelet Transformation) to filter the data and to extract

features [34], [62], [45], [25], [66]. Although these methods by themselves may not be computation-

ally time consuming, a significant amount of data must be collected to apply them. Immediate

classification of data cannot be performed on a single sensor reading if such techniques are used.

Recent research has shown that new faster algorithms can be developed and are effective, but these

algorithms have been shown to improve only the filtering of the data, and have not been shown to

decrease classification time while maintaining accuracy [107], [34].
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Current research has focused on studying movement for a number of applications within the

medical field including gait analysis [66], [45], monitoring patients for tremors [25], seizure activity

and falls, and studying ergonomics and posture [76], [104], [34]. Most of the systems are not

designed to be used in real time, and they tend to be invasive or have interfaces that are designed

for use only by either medical or ergonomic experts [76], [66], [107], [34], [65], [62], [45], [73]. Of

the research that is being done for use by an end-user, very little has been done to design systems

that are truly non-invasive and unobtrusive. Several systems are deemed to be non-invasive but

they require the on-body sensors to be either taped to the skin of the user or attached with tight,

inflexible straps [104], [62], [25]. At the time of this paper, only one study could be found with a

truly unobtrusive system. In this study an accelerometer was attached to a cell phone that could

be carried either in the breast pocket or side pocket of an individual [45]. The data collected by this

sensor was sent via the cell phone to an off-site computer that would process the data and determine

the gait of the user. Although this system has achieved the goal of creating a human motion system

that is not obtrusive or invasive, it is not truly real-time, nor does it give immediate feedback to

the user. This system also had a very different goal, that is, to distinguish different gaits, and had

a wide range of success for different types of running and walking, with an identification accuracy

rate ranging from 72% to 95% [45]. It has not been proven that such a non-invasive system can be

successfully used to monitor posture.

There are a number of types of sensors that can be used to record the movement and position

of the human body. The most commonly used sensors are accelerometers, gyroscopes, electro-

goinometers, magnetometers, and smart sensing fabric [104]. Each of these has advantages and

disadvantages. Accelerometers are the most commonly used, as they are relatively inexpensive and

do not require a large power source. The accuracy of accelerometers depends on the quality of the

sensor used, and although research has shown they can have a relatively high error rate, recent
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advances in technology have resulted in the design of accelerometers that are highly sensitive to

movement [104]. They can be used to measure acceleration and, if the acceleration is small in

relation to gravity, they can also be used as inclinometers (used to measure the change in incline or

angle) [104], [62]. Magnetometers can be used to measure the strength of the magnetic field in the

vicinity of the instrument. Magnetometers can be disadvantageous as they may be affected by the

Earth’s magnetic field or metallic implants, and they may not be portable because some require

an external receiver as well as an on-body sensor [104], [107], [34]. Gyroscopes are able to measure

angular velocity due to their rotating reference frame. The main disadvantage with gyroscopes

is that they have a tendency to drift and have to be re-calibrated [66]. Electro-goinometers, also

called flexible angular sensors or strain gauges, have been used to determine the relative positions

of sensors, but it has been shown that the movement of the user may compromise the sensor

itself [104], [25]. Most current applications use a combination of sensors in a single system, so that

the disadvantages of one type of sensor can be overcome by the use of another type of sensor.

Most multi-sensor systems combine accelerometers with either gyroscopes, magnetometers, or

both [104], [76], [66], [107]. Electro-goinometers can be used to determine the position of different

sensors in relation to each other [76]. However, these systems can become very complex, with in-

creased computational time and obtrusive measuring systems. In a recent study, trunk posture was

measured using a hybrid system with two sensor groups, each with accelerometers, magnetometers

and gyroscopes [76]. One sensor grouping was placed on the center of the back of the research sub-

ject (over the T1 vertebra), and the other sensor grouping was attached to the lower back (over the

sacrum); both were attached with tight straps. The two groupings were connected with a flexible

rod potentiometer to track the relative positioning of the sensors. Although this system is highly

accurate in correctly determining the position of the subject, the system is bulky, cannot be worn

underneath clothing, and could not be used outside of a laboratory testing environment [76].
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In summary, current research has shown that on-body sensors can be used to create highly accu-

rate systems to monitor human movement or position. However, these systems are usually designed

for use by medical or ergonomic experts and do not provide real-time results. Also, no unobtrusive

and non-invasive system has been devised that can analyze posture accurately [104], [76], [25]. A

commercial system based on this technology could be used in dental schools as an affordable means

to teach and reinforce correct body positioning. It would also be an affordable way for practicing

dentists and dental hygienists to monitor and correct their posture as they work with patients.

The resulting improvement in body positioning would have many potential benefits in terms of

student/practitioner health, productivity, reduction of error and risk to patients, and savings in the

direct and indirect costs associated with WMSDs.
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CHAPTER 3 Directed Active Shape Modeling

3.1 Introduction: The Original ASM Algorithm

As discussed in the previous chapter, the Active Shape Modeling (ASM) algorithm is an ef-

fective segmentation technique, and it has been used successfully in various medical applica-

tions [18], [17], [16]. Due in part to the benefits outlined in Chapter 2, the ASM algorithm is

an appropriate method for the segmentation needs of the image-based dental educational system

discussed in Chapter 1. However, there are significant limitations to the ASM algorithm. These

limitations are addressed with the development of the Directed Active Shape Modeling (DASM)

algorithm, a novel extension of the ASM created for the image-based dental educational system.

To provide a foundation for explaining the differences between the DASM and the traditional ASM

algorithm, the steps that comprise the ASM algorithm are outlined below.

The ASM algorithm consists of two main stages. First, in the training phase a statistical model

representing the shape(s) to be segmented is created from a number of training images. The second

stage, the testing phase, makes use of the statistical model to find that shape within a test image,

using a cost minimization function to locate the best fit of the model in the new image, and Gaussian

pyramid filtering to shorten the computational time of the algorithm.

3.1.1 Creating the Statistical Model

The first important aspect of creating a comprehensive statistical model of the shape is finding good

landmarks to represent the shape. Good landmarks usually represent corners, edges, and junctions

between lines that define the shape(s) to be modeled. However, research has shown that often these

landmarks alone create a sparse model, and more than just these landmarks are needed to create

25
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a model that can accurately find the shape in a new image [16], [18]. Cootes et al. [16] found

that if landmarks are added along the edges between these defining points accuracy improves. The

number of landmark points can vary and is user-defined depending on the application. The order

of the landmarks that define the shapes is an important aspect of the model. One of the drawbacks

to ASM is the fact that landmark identification in the training images is a manual task and can be

time-consuming, and usually requires expert input. However, once these points are recorded the

remainder of the ASM algorithm is automated (with the exception of the initial placement of the

model within the test image) [16]. The outline for the training of the ASM algorithm is shown in

Figure 3.1.1.1.

For the landmarks for each training shape, a vector is created (Equation 3.1.1.1) [16]:

X = (x1, ..., xn, y1, ..., yn)T (1)

where xi and yi represent the x and y coordinates for landmark i in the image, for a total of n

landmark points within T images. The next important step after the landmarks have been defined

is to align all of the training images into the same coordinate frame before creating the statistical

model. This is done by rotating, scaling and translating each training shape so that the distance

between each shape and the mean shape is minimized [16]. This is done through the following

iterative approach:

1. Each training model is translated so that the center of gravity is at the origin.

2. Take a random training shape example and make it the initial estimate of the mean shape

and scale, so that for that model’s x and y values (stored in vector X of length i), as seen in

Equation 3.1.1.2:

∣x∣ =
√∑

i

x2
i + y2

i = 1 (2)
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Figure 1: Outline of the algorithm for creating the statistical model.

Make this x0 and define it as the orientation for the other examples to be oriented against.

3. Align all of the training shapes with this normalized and oriented current estimation of the

mean shape. Aligning two shapes is done by choosing a scale (s) and rotation value (Θ) and

then transforming the shape (MsΘ(x1)) so that the sum of squared differences between the
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Figure 2: Outline of the algorithm for testing the statistical model.

two shape models is minimized, see Equation 3.1.1.3:

∣MsΘ(x1)− x2∣2 (3)

4. Re-estimate the mean from the aligned example models.

5. Constrain the scale and orientation to this current mean by aligning it with x0 and ∣x∣ = 1

(scale).



www.manaraa.com

29

(a) (b) (c) (d) (e)

(f)

Figure 3: Example of six training landmark sets before alignment.

6. Repeat steps 4 and 5 until convergence. Convergence occurs when the mean does not change

more than a set threshold from one iteration to the next.

After the training shape models (see Figure 3.1.1.3, note the differing scale, location, and ro-

tation of the models) have been aligned, Principal Component Analysis is applied to the model.

The purpose of applying PCA is to reduce data held in the model to create the most compact

model that still holds enough information about the shape to accurately locate the shape in new

images. PCA is a statistical technique that projects a highly dimensional set of data into a new,

lower dimensional space [103]. PCA finds the eigenvectors and eigenvalues from the covariance of

the data set; covariance is defined for the data set as seen in Equation 3.1.1.4.

S =
1

m− 1

i=1∑
m

(xi − x)(xi − x)T (4)

Each eigenvalue (�i) gives the variance of the data around the mean in the direction of each
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eigenvector. The first t eigenvectors (pi) are chosen to represent the model, with the percentage of

variation of the model defined by the number of eigenvectors selected to represent the model [16].

The total variance for all the eigenvectors �i is computed from Equation 3.1.1.5:

VT =
∑

�i (5)

where T is the number of training images [16].

With PCA applied to the data set, any model from the training set (x) can be approximated

by Equation 3.1.1.6:

x ≈ x+ Pb (6)

where x is defined as the mean model of points in Equation 3.1.1.7

x =
1

T

T∑
i=1

xi (7)

P is the matrix of the first t eigenvectors (P = (pi, p2, ..., pt)) , and b is a vector of parameters with

T dimensions, see Equation 3.1.1.8:

b = P T (x− x) (8)

P defines the coordinate frame in the original space, and the parameters, b, are the significant

coordinates of the shapes within this frame. The model can be varied by changing the elements

in b. The allowable variation of the parameters b is usually limited to the first three standard

deviations from the mean, so that the shape maintains similarities to the training examples (see

Figure 3.1.1.4 and Figure 3.1.1.5 [16] and note that in Figure 3.1.1.5 the mean shape model is shown

in green, with one standard deviations of b shown in red, which is the allowable deformation of the

model based off of the training set of images).
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Figure 4: An example of a mean shape model.

Figure 5: An example of a mean shape model with deviations from the mean.
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3.1.2 Fitting the Model

After the model is created, it can be used to find the target shape in a new image in the testing

phase of the ASM algorithm. The general outline for finding the shape is shown in Figure 3.1.2.2.

Fitting the model is done through the optimization of the cost function [16]. The best fit model

(which is found as described above) is compared to the potential shape in the image using a cost

function, F (c). F (c) can be thought of as a measurement of error, so that if the model and shape

are a perfect match F (c) would be 0 [16]. The parameters of the function are selected so that F (c)

is as close to 0 as possible. Cootes et al. [16] define the optimal cost function as P (c∣I), where

I represents the image, P (c∣I) is the probability that the model parameters describe the object

within the image, and c is selected to maximize this probability. The parameters are the shape

parameters (b) and the pose parameters (XT , YT , s and Θ). The fit function can be defined in many

ways. The fitness function for the ASM algorithm is defined as the distance between each landmark

point and the closest strongly defined edge within the test image [16]. This distance can be defined

as a measurement of error in Equation 3.1.2.9:

F (b,XT , YT , s,Θ) = ∣X ′ −X∣2 (9)

To minimize the fitness function, the following iterative algorithm is used in Equation 3.1.2.3.1.2:

1. Search the neighborhood of each landmark point within X and find the best match for that

point.

2. Update the pose parameters that best fit these new points identified for each landmark point,

using the fitness function (error measurement function) outlined below.

3. Apply the constraints to each shape parameter, bi, so that it is within three standard devia-
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Figure 6: An example of the color pixels normal to the landmark (the landmark is in black).

tions of the mean (Equation 3.1.2.10):

∣bi∣ < 3
√
�i (10)

4. Repeat until convergence, i.e. the change from one iteration to the next is below a predefined

threshold.

To find the initial best match for each landmark, the pixels normal to each landmark are exam-

ined, and compared to statistical models for each landmark created from the training examples [16].

These statistical models are defined with Equation 3.1.2.11:

gi →
1∑
i ∣gij ∣

gi (11)

Each landmark has a profile, which is defined as vector gi, that has the length 2K + 1, as seen

in Figure 3.1.2.6. The derivative is taken from each vector, and normalized by the division of the

vector by the sum of the absolute values of the pixel intensity values. The mean and covariance for

the set (across all training images) of profiles for each landmark is calculated, and this defines the

statistical model for the landmark [16].

This fitness function is defined as the following Equation 3.1.2.12:

f(gs) = (gs − g)TS−1
g (gs − g) (12)
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Figure 7: An example of the search vector of color pixels normal to the current landmark in the
test image.

The fitness function uses mean (g) and covariance (Sg) as defined above, and calculates the Ma-

halanobis distance between model landmark profiles and profiles of the best fit points for each

landmark in the test image (see Figure 3.1.2.7). Again, to find the best fit shape for the model

within the test image, this cost function f(gs) must be minimized. The training profile is compared

along the profile for the test landmark, and the location with the lowest cost function is the best

fit, see Figure 3.1.2.8 [16]. The vector of is searched to find the best fit for the statistical model for

that landmark by minimizing the fitness function as the difference in the values in the statistical

model are compared to the values of the potential matches in the search vector.
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Figure 8: An example of vector of color pixels normal to the current landmark in the test image.

Once the cost function has been minimized, the statistical model created in the first part of the

algorithm can be adjusted to fit to the new shape using Equation 3.1.2.13:

X = MXc,Yc,s,Θ(x+ Pb) (13)

The model is adjusted by applying the transformations (M) to the model (similar to the alignment of

the training shapes described earlier) by translating (Xc, Yc), rotating (Θ) and scaling (s) each point

in the model, transforming the size, rotation and location of the shape, seen in Equation 3.1.2.14

[16]:

MXc,Yc,s,Θ

⎛⎜⎜⎜⎝ x

y

⎞⎟⎟⎟⎠ = (XcYc) +

⎛⎜⎜⎜⎝ s cos Θ −s sin Θ

s sin Θ s cos Θ

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝ x

y

⎞⎟⎟⎟⎠ (14)

When a new shape is presented to the model, the best variation of the model to fit to the new

shape is determined through the minimization of Equation 3.1.2.15:

∣Y −MXc,Yc,s,Θ(x+ Pb)∣2 (15)
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which represents the sum of the squared distance between the model (x) and new shape (Y ) points.

To minimize this equation, the following iterative algorithm is used:

1. Initialize the shape parameters to 0.

2. Create the model with Equation 3.1.2.16:

x = x+ Pb (16)

3. Find the transformation (M) parameters that align the model (x) points to the new shape

(Y ) points.

4. Project the new shape’s set of points (Y ) into the model frame by inverting M , via Equa-

tion 3.1.2.17:

y = M−1
Xc,Yc,s,Θ

(Y ) (17)

5. Project y into the tangent plane of the mean model shape (x) by scaling y in Equation 3.1.2.18:

y′ =
1

y.x
(18)

6. Update the parameters to match to y′ in Equation 3.1.2.19:

b = P T (y′ − x) (19)

7. Repeat until convergence, which occurs when there is no change in pose or parameters from

one iteration to the next.

To decrease the computational time of the ASM algorithm, a multi-resolution version of the

ASM algorithm can be used. This makes use of Gaussian image pyramids. The bottom level of the
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Figure 9: The initial placement of the model on the lowest pyramid level image.

Figure 10: The model being fitted to the image.

pyramid is the original test image. Each subsequent (higher) level is a smoothed and subsampled

version of the image, with the number of pixels halved from the previous level. The ASM algorithm

is first carried out on the highest level of the pyramid (the most minimal version of the test image),

which allows for a wide search area for the best fit for each landmark.

To determine when convergence for that level of the pyramid has been reached, the location of

the best fit landmark along the search vector is examined. If the best fit landmark is close to the

center of the vector (near the previous best fit landmark, which is located halfway along the search
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Figure 11: The next pyramid level, and further fitting of the model to the shape in the image.

vector), then it has not moved significantly from the previous location of the best fit landmark, and

it can be assumed that the landmark has converged on the best fit. However, if the best fit landmark

is near either extreme of the search vector (far away from the previous best fit landmark location)

then the best location for that landmark has not been found, and convergence is not reached. The

number of best fit landmarks that are close to the center of their search vectors is calculated. To

define the length of the search vector that is considered close to the center, the vector is divided into

four equal lengths. The two lengths that are in the center of the vector are considered the ’close’

range, and if the new best fit landmark falls within that length, it is counted towards convergence,

see Figure 3.1.2.13. If this number is above a user-defined threshold, convergence has been reached

for that level, and the algorithm moves on to the next lower (finer) level of the pyramid [16].
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Figure 12: Further fitting of the model to the image.

Figure 13: Comparison of the statistical model to the search vector.
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The ASM algorithm has a total of seven parameters that can be adjusted. For model creation,

the number of landmarks, the variation of the statistical model (the number of modes), and the

number of pixels used to create the statistical profiles for each landmark are all determined by the

creator of the particular model. For the fitting of the model to the target shape, the parameters

include the number of pixels searched for the best fit point for each landmark, and for the use of

the Gaussian image pyramid, the number of levels in the pyramid, the threshold for converging

at each level and a maximum number of iterations at each level. It is important to note that the

location of landmarks for each training model is also user-defined [16].

3.2 Methods: Directed Active Shape Model

To effectively apply the ASM segmentation algorithm to locate and monitor drilled dental prepa-

rations as outlined in the proposed image-based dental educational system, a number of significant

modifications need to be made to the original ASM algorithm. The resulting algorithm is the novel

Directed Active Shape Modeling (DASM) algorithm. The three significant modifications are listed

below:

1. An interactive machine learning algorithm is used (along with the use of edge detection

image processing techniques) to assist the user in more easily identifying the landmarks in

the training image, reducing time and increasing the accuracy and consistency of the design

of the statistical model.

2. Color intensity information is used instead of gray scale intensity values for the normalized

gradient profiles for the landmarks in the model. This modification triples the amount of

information held within the statistical model because values for all three colors (RGB) are

used for the files in place of a single grayscale intensity value.
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3. The testing portion of the algorithm is modified to allow for full deformation of the drilled

preparation shape model, even if it does not conform to the shapes seen in the training

images. This modified testing algorithm is run concurrently with the traditional version,

allowing for the expected drilled preparation shape to be placed on the tooth surface as well.

This modification will allow for full distortion of the model (outside of the allowed variation

in the model) and therefore allow for quantitative measurement of the difference between the

expected and actual preparation shape.

These novel modifications are also shown in the flowcharts Figures 3.2.14 and 3.2.15; the changes

from the original ASM algorithm are highlighted in red.

The DASM algorithm is used within the image-based dental educational system to located to

related areas in the image. First, the DASM algorithm will need to be able to correctly identify the

exact location of the tooth the student is working on. After locating the tooth within the image,

the DASM algorithm will then locate and measure the size and shape of the dental preparation the

student is drilling. Two shapes (the tooth surface and the drilled preparation) are segmented the

from digital images of the dental field. Once both shapes are located, the quantitative information

about the segmented shapes is then used to measure the progress of the shape of the preparation

and monitor the appropriateness of the location of the preparation on the tooth. It should also

be noted that for the intended application of the DASM, the testing phase (locating the shapes

within in the test image) does not need to be completely automated. The educational system will

be designed to be interactive with the student or practitioner. The start of the testing phase of

the DASM algorithm requires input from the user as to the initial placement of the model. The

practitioner or student can point with the drill or another instrument to the appropriate tooth, and

the system can use this visual input to determine the starting location for segmentation.
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Figure 14: Outline of the algorithm for fitting the statistical model in a new image for the DASM
algorithm.

3.2.1 Use of IML for training the DASM

The first major modification of the ASM algorithm is the addition of Interactive Machine Learning

(IML) to the first step in creating the statistical shape model. In the traditional ASM algorithm,

landmarks must be manually placed on each training image to properly identify the shape(s) that

will define the ASM model. Traditionally landmarks are placed in clearly identifiable locations along
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Figure 15: Outline of the algorithm for fitting the statistical model in a new image for the DASM
algorithm.

the outline of the shape, such as corners and intersecting lines. However, Cootes et al. [16], [18]

found that to improve the accuracy of the statistical model, additional landmarks should also

be placed along the edges of the shape in between the easily defined landmarks. The placement

of a large quantity of landmarks is time-consuming and introduces the possibility of user errors,

especially in the placement of additional landmarks between the easily identified landmarks. It

is particularly difficult to place landmarks for organic, amorphous shapes (such as the teeth and
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Figure 16: Initial four user-placed landmarks on a training image.

Figure 17: Edge detection during the IML placement of landmarks.

preparation areas for this application).

To address these problems with the ASM algorithm, an Interactive Machine Learning (IML)

approach is used. As explained in detail in Chapter 2, IML represents a paradigm shift from

classical machine learning by allowing for quick iterative input from the user to train and adjust a
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Figure 18: Refinement of landmarks during IML landmark placement.

machine learning algorithm quickly [27]. In the first step of the DASM algorithm, instead of having

the user manually place all of the landmarks, the user initially places only a handful of landmarks

in pertinent locations. In this application, the user initially places size landmarks for the tooth

shape, marking the four locations where the edge of tooth surface meets the two adjacent teeth, as

well as two additional landmarks marking the center of the two exposed sides of the tooth surface,

as seen in Figure 3.2.16 and Figure 3.2.17. In this example, just the drilled preparation is being

segmented. Four initial user-placed landmarks were placed at the extreme top, left, bottom and

right of the tooth surface (seen here in red). A search area is defined between each pair of initial

landmarks (seen outlined in blue in which to run the edge detection algorithm. The edges can be

seen highlighted by the red within the blue box. If more than one edge was detected (as seen in this

example), then the one closest to the middle of the search area is used, as it is closer to the initial

points placed by the user. Then, following the IML paradigm, a simple edge detection algorithm

(a Homogeneity edge detection algorithm [35]) is applied to the regions of the image between each

of the initial user-placed landmarks to quickly identify the rest of the tooth edge.

If the edge detection algorithm has misidentified the edge of the tooth or the drilled preparation,

the user can simply click on the image along the correct edge of the shape. The edge detection
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Figure 19: Further refinement of landmarks during IML landmark placement.

algorthim is modified by narrowing the search area within the image, increasing the likelihood that

the detection algorithm will correctly identify the edge of the shape. This process can be repeated

as many times as necessary until all of the edges of the shape(s) are correctly identified. This

is demonstrated in Figures 3.2.18 and Figure 3.2.18. The system has taken in the placement of

the additional user-placed landmark seen in Figure 3.2.18 and has refined the landmarks for that

edge (seen in purple). The small red landmarks are the initial user-placed landmarks. The green

landmarks are the initial DASM-placed additional landmarks. The purple landmarks are those

that are being corrected by the user. The large red landmark was placed by the user to inform the

system of the correct edge. One additional user-placed landmark on that edge has resulted in the

correct placement of the landmarks along the edge of the preparation.

Once the outline of the shape(s) is correctly identified by the edge detection algorithm, a large

number of additional landmarks can be placed automatically by the DASM algorithm between the

initial user-placed landmarks. This process has two major benefits. First, it greatly decreases the

input needed from the user by requiring only the initial landmarks and then a relatively small

number of additional points to be identified by the user. The second benefit is the even spacing of

the landmarks along the edge of the shape in each training example. This cannot be guaranteed
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with user-placement of additional landmarks, when there is nothing along the edge of the shape in

the image that can assist the user to make sure he or she is maintaining equal spacing between the

additional landmarks.

3.2.2 Use of Color Intensity Profile Models in DASM

The second major addition to the ASM algorithm is the use of color pixel information in the

creation of the statistical intensity profiles for the landmarks. For the ASM algorithm to be able to

identify the best locations for each landmark of the shape in the new image, a statistical model is

created for each landmark, based on the intensity values of the pixels surrounding the landmarks

in each training image. To increase the accuracy of the DASM algorthim, instead of using only the

grayscale intensity values with the traditional ASM algorithm, the color intensity values are used

(see Equation 3.2.20).

gim →
1∑

i ∣gijm∣
gim (20)

Each landmark’s intensity profile is defined by the vector gim, that has the length 2K + 1. The

addition of m, which takes a value from 1 − 3, represents the intensity values of R,G and B for

the color pixels that make up the vector in the intensity profile. The Mahalanobis distance that is

used in the cost function (as described in the ASM testing above) between model landmark profiles

and profiles of the best fit points for each landmark in the test image in this case is the averaged

distance for each color aspect of the pixels in the search vectors.

3.2.3 Quantitatively Comparing the Expected and Actual Drilled Preparation using DASM

The addition of the ability to monitor the differences between the actual and expected drill prepa-

ration is the most important modification of the original ASM algorithm. One of the defining

characteristics of the ASM algorithm is the restrictions in the variation of the point distribution
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Figure 20: Example of the color pixels making up the search vectors normal to the landmarks for
the color intensity profile for the landmarks in the DASM.

model. For DASM, the ASM algorithm is run as usual. However, the algorithm is run a second

time with the modified version of the iterative function used to find the best fit for the target shape

of the drilled preparation. Step three in this function in the ASM algorithm,

∙ Apply the constraints to the shape parameters, b, so that it is within three standard deviations

(see Equation 3.2.21):

∣bi∣ < 3
√
�i (21)

is left out of the function in the DASM version of the algorithm. The best fit landmark points

identified by the modified algorithm and the original algorithm may differ. This difference is used

as a quantitative measure to compare the expected shape and the actual shape, as well as to

compare the expected and actual location of the preparation on the tooth.

Although in theory the fitting of the landmarks for the drilled preparation shape should be

completely unrestrained, a heuristic was added to keep all of the best fit locations for the shape

preparation landmarks within the boundary of the tooth edge (as determined by the concurrently

running ASM algorithm segmenting the tooth shape and the expected shape preparation). This

allows for the unrestrained segmentation of the preparation within the boundary of the tooth, but



www.manaraa.com

49

ensures that no landmarks identifying the preparation could be located outside of the tooth surface

area.

3.3 Testing of the DASM Algorithm

The effectiveness of the DASM model was tested using images of dental preparations drilled in

practice teeth at the Virginia Commonwealth University School of Dentistry. The preparations

were drilled by a dental technician. Preparapations were drilled on two different teeth, 19 and

18, and a total of three preparations were drilled, a Class 1 preparation on tooth 19, a training

Rectangle preparation on tooth 19, and Class 2 preparation on tooth 18 (see Figure 3.3.21). There

was little to no variation in color or texture of the plastic teeth used in these preparations, as they

are manufactured and there is no visible disparity of the tooth surfaces.

For all of the dental preparations images were recorded using a hand-held commercial off-the-

shelf digital camera (a Sony Cybershot DSC-W170/R 10.1 MP Digital Camera) at the highest image

resolution (10.1 megapixels) during the drilling process. For each preparation, the drilling process

was divided into three sessions. The digital photographs taken during the first session recorded

images of the tooth at various points from preparation through the points at which the preparation

was just smaller than an acceptable preparation (ie. the size and the shape of the preparation

were not large enough to be graded as a correct preparation). Images recorded during the second

phase show the tooth with a preparation within an acceptable range. And finally, digital images

from the third session show the tooth with a drilled preparation beyond the acceptable range (ie.

the drilled preparation is is one or more dimensions larger than acceptable). While the images

were being recorded, the lighting and angle and relative positioning of the camera were changed

manually throughout the drilling sessions.

In addition to these three phases for each preparation, the Class 1 preparation on tooth 19 was
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(a) (b)

(c)

Figure 21: Examples of the three different types of tooth preparations used for testing the DASM.
a) A Class 2 preparation on tooth 18, b) A Class 1 preparation on tooth 19, and c) A Rectangle
preparation also on tooth 19.

repeated so that the preparation was in the wrong position on the tooth surface. All of the images

recorded during the drilling of this preparation are incorrect; even if the shape of the preparation

is acceptable, the fact that it is not placed in the correct location on the tooth surface renders it
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(a) (b)

(c)

Figure 22: Examples of the three incorrect preparations on tooth 19 a) A Class 2 in an incorrect
location on the tooth surface, b) A Class 2 preparation that is too large, and c) A Class 2 preparation
that is too small.

unacceptable; see Figure 3.3.22.

All of the images used for testing are considered “pre-labeled” because the dental technician
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clearly defined each of the three different phases of each drilling of the preparations.

To demonstrate the robustness of the DASM algorithm, the test images were recorded from a

variety of angles and with varied lighting, simulating the types of images that would be recorded by

an automated image-based dental educational system (for example, if a surgical camera attached

to the loupes of the dental student recorded the student’s field of view). A small percentage of the

testing images contained teeth that were partially obscured by the edge of the mouth (although

the drilled preparation was not obscured). Approximately 10%, of the edge of the tooth shape was

obscured in these particular test images. Research has shown that ASM algorithm can be robust to

partially obstructed images [16]. For this application and set of test images, the DASM algorithm

shares the robustness of the ASM algorithm when the shape to be segmented is partially obscured

(see Section 3.4).

Two types of testing for the DASM algorithm were completed using the images described above.

First, testing was done to see if the addition of the IML to the landmark placement and the use

of color intensity values in the statistical modeling for the landmarks improved the accuracy of the

DASM over the ASM algorthim. This was done by using the DASM algorithm to locate the correct

tooth and preparation on a subset of the images described above. This testing made use of just the

images that contained preparations that fell within the “acceptable” range, as the third part of the

DASM algorithm was not being tested yet.

For this subset of images, the DASM algorithm was run first with just the modified semi-

automatic landmark placement, then with just the color intensity profiles and then with both

modifications. Table 3.4.3.4 outlines the results of this testing. The testing was done using 10-fold

cross validation, meaning that the training set was divided into 10 ’folds’, then trained 10 times,

each time leaving a different ’fold’ out for testing purposes. To confirm accuracy, the placement

of each landmark by the DASM algorithm was compared to the correct location expected for
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the landmarks in each testing image (as placed by the user). The difference was measured using

Euclidean distance; then averages of the error distances were taken.

The purpose of the second testing trial was to confirm the ability of the DASM algorithm to

properly locate the drilled preparation in the image (even if it was not in the expected location on

the surface of the tooth or if it did not have the expected size and/or shape). This was done again

by comparing the location of the landmarks placed by the DASM algorithm with correct location

of the landmarks (as placed by the user), with images that contained “incorrect” preparations as

described above.

3.3.1 Setting the Parameters for Testing and Training

As stated earlier, there are a number of parameters that can be adjusted for the training and

testing of the traditional ASM algorithm, and the same parameters can be adjusted for the DASM

algorithm. The number of landmarks used to segment the tooth shape and the drilled preparation

totaled 60, 36 for the tooth outline and 24 for the preparation. As mentioned in the IML landmark

placement subsection of this chapter, the user places only the initial relevant landmarks. For the

tooth outline that was a total of six landmarks; the user identified the point at which the tooth edge

touched the edge of an adjoining tooth (four landmarks) and two additional landmarks identified

the widest point of each exposed side of the tooth. Four initial landmarks were placed by the user

on the drilled preparation; one each at the highest, lowest, and widest points of the preparation.

The IML algorithm then automatically placed an additional five landmarks between adjacent user-

placed landmarks, resulting in a total of sixty landmarks for the entire model. Limited testing was

done with both greater and fewer landmarks. A greater number did not greatly increase accuracy

(and did greatly increase training and testing time), and fewer landmarks decreased the accuracy

of the model.
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Another parameter for the DASM algorithm is the size of the statistical intensity profiles for

the landmarks. A vector of ten pixels was selected, because this size was able to capture the most

pertinent information about the location of each landmark in the training images (mainly that each

landmark was located on an edge). The length of the search vectors to locate the best fit for the

intensity profiles within the test image was set at 30 pixels. A smaller search vector resulted in a

model that was not always able to locate the best fit landmark based off of the initial placement of

the model in the test image. A larger search vector decreased accuracy, as the model searched far

outside the parameter of the tooth shape in the image, distorting the results. The highest pyramid

levels available (based on the size of the training images) were used.

For testing the DASM, the percentage of convergence for finding the best fit landmarks (the

percentage of best fit landmarks that are within the closest fifty percent of the search vector to

the center) was 80%. Through visual inspection of the search vectors and the landmark placement

during testing, this percentage of convergence resulted in almost every landmark correctly locating

either the edge of the tooth or the edge of the preparation for this application. A higher percentage

did not result in any increased accuracy of the model.

One standard deviation was allowed for b in the trained model. This resulted in a highly

constrained model during testing to insure that the proper shape and relative positioning of the

model was retained during the search process. This was especially important in searching for the

drilled preparation in an image that contained an incorrect preparation, as the goal was to maintain

a correct preparation model to overlay on the test image.

3.4 Results and Discussion

As seen in Table 3.4.1, the addition of the the DASM modifications to the ASM algorithm increases

the accuracy of the segmentation of the tooth and drilled preparation within test images. In
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Table 3.4.1 the mean distance of error (number of pixels) is the averaged Euclidean distance between

each user-placed landmark (the correct location of the shape) and its corresponding system-placed

landmark. Significantly, the use of color intensity pixel values greatly increases the level of accuracy.

The combined effect of both additions to the traditional ASM algorithm shows decreased mean

distance error of over 80% (see Table 3.4.1). It should be noted that the approximate width and

height of the tooth in the digital images was over 700 pixels. Therefore, for instance, the error of

the placement of the landmarks when both the IML and color profiles were used was less than 5%

of the width or height of the tooth.

Table 1: Accuracy of IML and Color Intensity Profiles on Training Images(Using 10-Fold Cross
Validation)

Traditional ASM IML Color Profiles IML and Color Profiles
Mean Distance of Error 202.56 210.51 56.05 39.7

As hypothesized above, the semi-automated placement of landmarks by the IML algorithm,

when combined with the use of color pixel intensity profiles, creates a more accurate and consistent

training set of landmarks. From image to image, the relative position of the landmarks stays the

same, which is not the case in the ASM-created training set, where user error results in inconsistent

spacing, as seen in the Figures 3.4.23 and 3.4.24. As a result, IML combined with color pixel

intensity profiles produces a more robust model and increased accuracy in the placement of the

model in the test image.

The effect of using color pixel values versus grayscale pixel values when creating the statistical

intensity models for the landmarks results in an even more dramatic increase in accuracy of the

DASM algorithm. The use of the ASM algorithm in this application presents a very difficult

segmentation problem. The variation in contrast and color between the teeth in the image and the
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(a) (b)

Figure 23: Two examples of the landmarks placed manually with the ASM algorithm. a) Well
placed landmarks b) Poorly placed Landmarks

(a) (b)

Figure 24: Two examples of the landmarks placed semi automatically with the DASM algorithm.
a) Well placed landmarks b) Poorly placed landmarks

surrounding gum and tissue, is very subtle. When just using a grayscale intensity model for the

landmarks, the ASM algorithm has difficultly in locating the correct placement for the landmarks

when minimizing the cost function during testing. With the addition of the color intensity values,
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the amount of information about the neighborhood surrounding each landmark triples, and the

error decreases by 72% percent.

The addition of these modifications to the ASM algorithm is not detrimental in terms of the

amount of time or effort for the user, or for the amount of time for the model to train or test. The

average amount of time for a user to manually place landmarks was 27 seconds, in comparison to

the average time of 26 seconds with the IML algorithm. Although the IML takes approximately

the same about of time for the user, the number of clicks needed from the user was decreased

by over a third (from the needed 60 clicks to place all of the landmarks, to an average of 38

clicks), which is a significant improvement. The addition of the color intensity values had minimal

impact on the time for training or testing for the DASM algorithm in comparison to the ASM

algorithm. The average time for training of the DASM with color intensity values was 68 seconds,

and the average training time for the ASM algorithm with grayscale intensity values was 39 seconds.

The average testing time with color intensity values was 72 seconds, and the average testing time

with grayscale intensity values was 47 seconds. The accuracy of the DASM in finding the actual

Table 2: Accuracy of DASM in Locating Incorrectly Drilled Preparations in Averaged Euclidean
Distance

Averaged Error Distance Class 1 Tooth 18 Class 2 Tooth 19 Rectangle Tooth 19
Start of Preparation 64.82 38.91 48.89

Past Correct Preparation 65.3 38.48 36.05
Offset Preparation – 80.19 –

location of drilled preparation is shown in Table 3.4.2. The error distance in the table is again

the averaged Euclidean distance between each landmark placed by the DASM algorithm and its

matching landmark hand-placed by the user on the actual preparation. The results demonstrate

the ability of the DASM algorithm to accurately locate the drilled preparation. An example of the

DASM results are seen in Figure 3.4.25. The yellow landmarks show the location and shape of
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Figure 25: Example of the DASM locating the actual and expected drilled preparation.

the expected drilled preparation. The black landmarks are the actual preparation that the DASM

algorithm identified. Via visual inspection, it can be seen that some landmarks are correctly placed

and some are not. The level of accuracy is reflected in the Tables 3.4.1 and 3.4.2, by the average

error distance. One black pixel in the middle is a landmark placed incorrectly by the DASM system,

reflected in the averaged error distance in Table 3.4.2.
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CHAPTER 4 Image Processing of Color Images for Texture

Detection and Depth Classification in Teeth

4.1 Introduction

Currently, no computer-aided systems exist that can provide user-friendly and easily understand-

able quantified information about tooth damage due to caries. Existing systems, including DIAGN-

ODent and DIFOTI, also suffer from low specificity, a high learning curve, and complex operational

procedures, all of which limit their applicability [105], [5], [79], [82]. One of the goals of this research

is to provide an easy way to understand quantitative feedback about the presence and extent of the

carious lesions, allowing dental professionals to interpret and integrate data quickly and reliably.

This chapter outlines the use of advanced image processing techniques to identify carious lesions

on the surfaces of teeth.

Extensive research has also been done in the use of image processing techniques (specifically

the use of information about color and texture in images) to determine 3-D depth in 2-D digital

images [1], [20], [21], [96]. The same image processing techniques used to identify carious regions

in images of the surface of teeth (statistical measurements of texture and color) were also used to

attempt the classification of the depth of drilled dental preprations from digital images of plastic

teeth (the same types of preparations and teeth as seen in Chapter 3).

For both of these applications, a wide variety machine learning classification techniques were

used to classify the digital images containing images of teeth with carious lesions, and digital images

of drilled dental preparations (for depth measurement). The same statistical measures were used

as feature vectors for both classification applications.

59
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This chapter is organized as follows. First, the machine learning classification techniques used

in both applications (and used in the posture-monitoring system outlined in Chapter 5. The

methods and results for the classification of carious regions are outlined next, and the chapter

is concluded with the methods and results for the depth classification in digital images of drilled

dental preparations.

4.2 Classification: Machine Learning Techniques

Before outlining the results, the classification methods used for both of these applications (as well

as the posture-monitoring application in Chapter 5 are described. A number of different machine

learning techniques were used for all of the classification applications and compared. The techniques

are described below.

The decision tree C4.5 was selected as it has been proven to work well within the framework of

interactive machine learning [80]. This decision tree method was used in the classification of images

with carious and non-carious regions. As an extension of the ID3 decision tree algorithm [80], C4.5

creates a decision tree that splits the data into classes using the attributes that have the highest

normalized information gain (the normalized difference in entropy). At each level of the tree, a

node is created by calculating what the normalized information gain would be if the node was split

using each feature. The feature that has the highest information gain is used to create that node.

This is repeated until a predetermined threshold is reached (a maximum depth of the tree has been

reached, or all of the nodes contain only samples from a single class, for instance) [80]. C4.5 has

been shown to work well with image processing techniques [35].

Another classification technique used for all three classification applications outlined in this

paper is the artificial neural network (ANN). ANNs, based on the biological concept of learning

through the connection of neurons, are one of the most well known classification methods [9]. Many



www.manaraa.com

61

variations of ANNs exist; artificial neural networks are very robust for noise, and work best when

classifying data from a complex system. In general, an ANN takes a relatively long time to train,

but a very short time to test or run [83]. One of the main drawbacks of classification with an

ANN is their tendency towards over fitting. For that reason, more noise may actually help with the

classification of ANNs as the algorithm will create broader classes that may encompass more data.

Adaptive boosting (AdaBoost) is an adaptive classification technique that is used in conjunction

with other algorithms. AdaBoost strengthens a weak learning algorithm by calling the weak learning

algorithm multiple times; the classification of the weak learning algorithm for the training data is

given a distribution of weights. In comparison with ANNs, AdaBoost is more sensitive to noise,

but not as prone to over fitting. Like ANNs, AdaBoost can be time-consuming to train, depending

on the number of iterations with the weak learning algorithm (T ) [32].

Support vector machines (SVMs) are supervised linear classifiers that map input data into

classes through the creation of hyperplanes. The SVM model makes use of training data, which is

divided by hyperplanes that are separated by the maximum distance possible such that no points

are between them. The samples that fall along the hyperplanes are called support vectors [77], [50].

Although the SVM algorithm is robust, like many machine learning techniques it suffers from high

sensitivity to parameter tuning, which makes accuracy computationally expensive.

Learning Vector Quantization (LVQ) can be considered to be a special case of an ANN. LVQs

are most closely related to self-organizing maps (SOMs) (they are considered a precursor of SOMs),

which is a type of unsupervised neural network. Like neural networks, LVQs consist of layers of

neurons that are connected via weights. Through the use of reference, or codebook, vectors the

neuron that most closely matches the expected output is strengthened via updating of its weights.

Like SOMs, the LVQ algorithm makes use of competitive learning. The LVQ technique also has

similarities to k-Nearest Neighbor, because the winning neuron is determined by calculating the
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distance between a codebook vector and the input vector [88], [93]. LVQ can be a time-consuming

method of classification, as the network needs to be trained in a method similar to an ANN.

k-Nearest Neighbor can be considered as the most basic machine learning technique. As a

sample is given to the algorithm, it is compared to all of the training data that is pre-labeled into

their respective classes. The distance between all of the sample data and each new training sample

in computed. The training sample that is “closest to the testing sample is found, and the testing

sample is then labeled with that training sample’s label. Usually Euclidean distance is used to

compute the distance between testing and training samples, but other distances can be used. In

comparison to many other machine learning techniques, k-NN has no required “training period,

but testing or running the algorithm can be computationally expensive. As the training data set

increases in size, the running time can increase greatly for k-NN, although optimization techniques

do exist [8].

Another method used for both image processing applications is the radial basis function network.

A radial basis function network is a type of artificial neural network that uses radial basis functions

as activation functions. In general, artificial neural networks are well suited for problems like image

classification because they can deal with complex problems. Radial basis function networks are

especially well suited as they have a faster training time than other artificial neural networks, and,

unlike some artificial neural networks, they can find a global solution to a classification problem.

A radial basis function network maps the data into a higher dimensional space so that the problem

is easier to solve [103], [15].

All of these machine learning techniques are applied to all of the classification problems in this

chapter and Chapter 5.
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4.3 Methods: Classification of Carious Regions

4.3.1 Feature Extraction Using Statistical Measurements

To measure the presence and extent of caries, the algorithm takes as input digital photographs

of the tooth surface to be diagnosed. These images are processed by first extracting features to

identify carious regions on the surface of the tooth, and then applying classification techniques to

identify which pixels in the digital image are part of the carious region(s).

Extraction techniques are used to identify and evaluate quantitatively caries on the surface of the

tooth. The input to the system is the image of the surface of the tooth. The main visual cues used

by dentists to identify the demineralization characterizing early caries include cavitation, texture

and roughness, discoloration and opacification of the surface of the tooth [95]. These visual cues

are quantitatively expressed through the feature extraction process. A feature vector is created for

each pixel and its neighboring pixel within the segmented tooth region of the image. This feature

vector describes the visual cues listed above.

The feature vector contains 7 features extracted from the pixel and a 7x7 pixel sub-image

comprised of the neighboring pixels. The 7 features are:

∙ Gradient: The magnitude of the gradient (the rate of change) of color of the image [35] and

∙ Statistical and signal processing measures: six texture measures are extracted from the image

for the red color channel [35]:

1. Average intensity level

2. Average contrast

3. Measure of smoothness

4. Third moment (the skewness of the intensity histogram)
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5. Measure of uniformity

6. Entropy

The statistical and signal processing measures are calculated from the histogram of each pixel

and its 7x7 pixel neighborhood. The first two measures, the average intensity level and the av-

erage contrast, are, respectively, the mean and the standard deviation of the intensity values of

the histogram. The third measurement is a measure of smoothness, which is calculated in Equa-

tion 4.3.1.22:

R = 1− 1

1 + �2
(22)

where � is the standard deviation. An R value approaching 0 would be a smooth area of the

image, and a value approaching 1 would have a high value of variety in intensity of pixel values,

and therefore would appear very textured. The fourth measurement of texture is the third mo-

ment of the histogram,which measures the “skewness of the intensity histogram. It is defined in

Equation 4.3.1.23

�3 =
L−1∑
i=0

(zi −m)3p(zi) (23)

where L is the number of possible intensity values (256 for the images used), p(zi) is the probability

of zi (an intensity value, between 0 and 256) occurring in the histogram, and m is the mean for

the histogram. This third moment describes statistically the symmetry of the histogram, and the

resulting value is 0 if the histogram is symmetrical, a positive number if the histogram is skewed

to the right, and a negative number if the histogram is skewed to the left. This gives information

about the overall trend of intensity values in the histogram [35]. The fifth texture measure is a

measure of uniformity. It is defined in Equation 4.3.1.24:

U =
L−1∑
i=0

p2(zi) (24)
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The sixth measure of texture is the entropy of the histogram, measuring the randomness of the

intensity values [35], and defined in Equation 4.3.1.25:

" =
L−1∑
i=0

p(zi)log2p(zi) (25)

where p(zi) is the probability of a specific intensity value occurring in the histogram.

4.3.2 Segmentation of the Tooth to Identify Carious Regions for Classification Training

To test the ability of the system to correctly identify carious regions in the images of the teeth, a

color-based segmentation method is used to segment training images of the teeth into carious and

non-carious regions.

As shown in Figure 4.3.2.26, segmented images of teeth were used for this step. First, an area

of the tooth surface that contains caries is manually highlighted. Since all of the carious regions

on the surface of a tooth may not be continuous, color segmentation was applied to identify other

carious areas. Using the input from the user that identifies the carious region, the average color

of the pixels in that region is calculated. Each pixel in the image of the tooth is compared to this

average color, measuring the similarity between the colors using Euclidean distance. Each pixel in

the image is then labeled as either “carious or “not carious based on the similarities between the

color values of the pixels. The cut-off for classifying the pixels is based on a threshold value, T .

For each image containing caries, an optimal value of the threshold T is determined using a set of

training examples which are visually inspected and segmented. The value of T ranged between 10

and 30 depending on the image (see Figure 4.3.2.27).

The segmented images are then used to create a training set of pixels to test the classification

algorithm.
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Figure 26: Example image of segmented tooth containing caries.

(a) The segmented region us-
ing T = 10.

(b) The segmented region us-
ing T = 15.

(c) The segmented region us-
ing T=30.

Figure 27: Examples of color segmentation of carious regions of the tooth from Figure 4.3.2.26 with
different values for threshold T.

4.3.3 Classification of Caries Using the Pixel Feature Vectors

To identify pixels that represent areas of the tooth surface that are damaged by caries, a supervised

method was applied, using images with known and labeled areas of caries are used to train the
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system prior to the use for caries identification. Principal Component Analysis (PCA) was tested

as a filtering technique to reduce the redundancy among attributes by comparing classification

results with and without using PCA. Recall that PCA is a statistical technique used to reduce the

number of features describing an image by removing any features that contain little to no novel

information about the image. PCA projects the data into a lower dimensional space, reducing the

dimensionality of the data through a linear combination of the features [103].

4.3.4 Results and Discussion

The classification techniques were tested using images of six teeth. These images were segmented

from six different images of carious and non-carious teeth in stock educational images from the

Virginia Commonwealth University School of Dentistry. Thirty-three images of teeth showing no

carious regions and nineteen images of teeth containing carious regions were used for testing. Fea-

ture vectors were created for all pixels in each image, and approximately 40,000 pixels representing

a random sampling from all of the segmented teeth images were used for classification. Due to the

relatively small number of carious regions in the images, there were 38,505 samples of non-carious

pixels and 1,532 samples of carious pixels.

Table 3: Results of Classification of Pixels as Carious or Non-Carious

Classifier Accuracy Precision Recall

RBF
With PCA 96.62% 0.97 0.11

Without PCA 96.86% 0.97 0.23

SVM
With PCA 96.17% 0.96 0.98

Without PCA 96.62% 0.97 0.98

k-NN
With PCA 94.63% 0.97 0.97

Without PCA 96.34% 0.98 0.99

LVQ
With PCA 96.20% 0.96 0.99

Without PCA 96.31% 0.96 0.04

ANN
With PCA 96.17% 0.96 0.07

Without PCA 96.17% 0.96 0.07
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The feature vectors were used for classification using 10-fold cross validation, as shown in Ta-

ble 4.3.4.3. For example, with the RBF network classification, without PCA, 96.86% of pixels were

correctly classified and 3.14% of pixels were incorrectly classified. With PCA applied, and the first

5 transformed features used, 96.62% of pixels were correctly and 3.38% of pixels were incorrectly

classified. In addition to accuracy, the precision and recall for the different machine learning tech-

niques were calculated. Where accuracy is simply the precentage of true results, precision is the

number of true positives divided by the number of true positives plus the number of false positives.

That is to say, precision is the number of samples correctly labeled into one class divided by all

samples that are labeled as belonging to that particular class (correctly or incorrectly). Recall

is the number of true positives divided by the number of true positives plus the number of false

negatives; it can also be defined as the number of samples correctly classified into one class divided

by all of the samples that should be classified as that class. If precision or recall has a value of 1.0,

then all of the samples were correctly labeled by class.

Looking at Table 4.3.4.3, it is interesting to note that although all of the machine learning

techniques showed a high level of accuracy, ANN, LVQ without PCA, and the RBF network had

a very low recall rate. As stated earlier, there were 38,505 samples of non-carious pixels and

1,532 samples of carious pixels. For these three machine learning techniques, a large number of

samples that were carious were erroneously labeled as non-carious. Due to the large disparity in

the sample sizes for the two classes, accuracy was still shown as over 90% although the majority

of the carious pixels were misclassified. This is an indication of overfitting for these techniques. It

is also interesting to note that LVQ with PCA had a high recall rate, and without PCA LVQ had

a low recall rate. This may be due to the effect of PCA lowering the number of features used for

classification, reducing the problem of overfitting of the classifier to the training data.

The high level of accuracy by all of the machine learning techniques testing and the high precision
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and recall values for the majority of the techniques used demonstrates the effectiveness of using

statistical measurements to differentiate between pixels representing carious and non-carious regions

on the tooth surface. This demonstrates the promising performance of the system in accurately

identifying damaged areas on tooth surfaces using digital color images.

4.4 Methods: Classification of Depth in Dental Preparations

4.4.1 Classification of Depth of Drilled Dental Preparations in Color Digital Images

The same statistical measures outlined in 4.2.1 were used to test the accuracy of depth classification

in images of drilled dental preparations. Research has shown that monocular cues such as variations

in texture and color can be used to successfully determine depth from 2D images [1], [20], [21], [96].

As in Section 4.2.1, 7 features were calculated from the pre-segmented images of the drilled teeth.

However, all three color channels were used for the statistical and signal processing measurements,

giving a total of 19 features:

∙ Gradient: The magnitude of the gradient (the rate of change) of color of the image [35], and

∙ Six statistical and signal processing measures of texture were extracted from the image for

each color channel, for a total of 18 features (6 for each of three color channels) [35]:

1. Average intensity level

2. Average contrast

3. Measure of smoothness

4. Third moment (the skewness of the intensity histogram)

5. Measure of uniformity

6. Entropy
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(a) (b) (c)

Figure 28: Digital images of too deep preparation. (a) Original image of the preparation. (b) and
(c) are images of tooth 19, identified and isolated.

(a) (b) (c)

Figure 29: Digital images of a preparation with acceptable depth. (a) Original image of the
preparation. (b) and (c) are images of tooth 19, identified and isolated.

The feature vectors were created using three steps, the third being an optional optimization step:

1. First, the image was divided into 15x15 pixel patches.

2. Second, the texture and color features were extracted for each patch of the image. This helped
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to maintain information about location of changes in depth within the image.

3. Third, PCA was applied to the feature vectors. For this application, PCA was used to

reduce the number of features. For machine learning techniques, the number of samples used

for training needs to be larger than the number of relevant features, and the values of the

features in the training set must be representative of all the data to be classified in order to

avoid overfitting [103]. Due to the small sample size (150 images) available for training and

testing, the number of features was reduced to try to increase the accuracy and generalizablity

of the classification model. By using PCA, the number of features could be reduced without

losing much relevant information [103], [15].

4.4.2 Results and Discussion

To test the ability of these statistical and signal processing measurements to classify depth in color

digital images of dental preparations, the feature vectors outlined in Section 4.4.1 were applied

to a total of 150 images of dental preparations done at the DentSim laboratory with an artificial

practice head and tooth at the Virginia Commonwealth University School of Dentistry. The images

were recorded using a digital camera while an expert cut a Class I Amalgam preparation on the

occlusal surface of tooth 19 (universal numbering system) [92]. This preparation was done twice

with two different practice teeth. Each tooth was first prepared to an acceptable depth, and then

each tooth was drilled past an acceptable depth as determined by the dental expert. Of the 150

images, 78 images were taken when the preparation was at an acceptable depth, and 72 images were

taken past an acceptable depth. A feature vector was extracted from each image using MATLAB

(2007a, The MathWorks Inc., Natick, MA) and these vectors were then classified using WEKA’s

implementation of a radial basis function (RBF) network and the other machine learning techniques

outlined in Section 4.2 [103].
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Of all of the feature vectors created from the images, 75% were used for training and 25% were

used for testing. The results of the classification are seen in Table 4.4.2.4.

Table 4: Results of Classification of Depth

Classifier Accuracy Precision Recall

RBF
With PCA 84.21% 0.78 0.88

Without PCA 73.68% 0.61 0.69

k-NN
With PCA 30.67% 0.34 0.38

Without PCA 36.00% 0.35 0.40

ANN
With PCA 58.0% 0.56 0.61

Without PCA 46.67% 0.56 0.61

LVQ
With PCA 44.0% 0.42 0.42

Without PCA 46.0% 0.43 0.38

SVM
With PCA 55.67% 0.57 0.22

Without PCA 56.0% 0.55 0.44

These results demonstrate the difficulty of classifying depth in a 2-dimensional image. However,

the level of accuracy reached using the RBF network classifier shows that depth can be ascertained

from 2-dimensional images. Since the data was not easily classified with the other machine learning

techniques, it can be concluded that the data is complex. k-NN had the worst results which implies

that the data is most likely not linearly separable, as research shows k-NN does not do well with

non-linearly separable data [103]. The other machine learning classifiers (SVM, ANN and LVQ)

that were tested can classify non-linearly separable data, but RBF had the highest level of accuracy.

By mapping the data into a higher dimensional space (which is not done with the other machine

learning classification techniques tested) the RBF was able to achieve a much higher accuracy,

demonstrating it to be a good fit for this application. Another advantage of the RBF was the

training time. On average, it took the SVM classifier 98 seconds to train. It took the k-NN 0.05

seconds, the LVQ classifier 11 seconds, and the ANN 40 seconds. The RBF network took only 0.1

seconds, faster than all other classifiers except the k-NN (which had the worst performance).
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Taking into consideration of the use of a commercial off-the-shelf digital camera instead of an

intraoral or surgical camera (which would provide much higher magnification and detail) and a

limited number of sample images, these preliminary results demonstrate the feasibility of the use of

image processing for the classification of depth in a 2D image. With more extensive sampling, the

use of higher resolution cameras and possibly exploration into other image processing techniques,

it is likely that this accuracy can be increased substantially.
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CHAPTER 5 Posture Monitoring

5.1 Introduction

Another need in dental education is computer-aided posture monitoring, as research has shown that

there is limited instruction in correct positioning during dental education, and incorrect posture

is a substantial problem in dental professions [86]. Few if any Schools of Dentistry have techno-

logical resources to assist in teaching ergonomically correct posture to dental students. Currently

ergonomic issues are addressed in a one-hour lecture before students begin working on mannequins,

followed up by instruction and feedback during practice time. Despite this background and the use

of magnification devices (loupes) that allow dental clinicians to observe the mouth of the patient in

detail without having to bend over, the students are nonetheless observed bending over to view the

mouth at a closer range, working in positions that are physically harmful to themselves. The school

has inadequate human instructional resources to provide sufficient one-on-one real time feedback

to correct these problems.

Current research, as described below, corroborates the need for appropriate training in body

positioning. Yet, according to a recent study, 60% of dentists say they did not receive sufficient

training on the ergonomic aspects of dentistry [94]. It would be cost-prohibitive to employ sufficient

staff trained in the ergonomics of dentistry to assess and correct students’ postures in real time

as they practice cavity preparation. A relatively inexpensive automated system, developed in

consultation with experts in ergonomics as well as dental education, would respond to the need to

monitor students’ posture during training, and would also be useful to assist practicing professionals

in maintaining proper posture.

74
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5.2 Methods

The main goals in the design of this ergonomic positioning prototype are to insure that the system

is portable and unobtrusive. To meet these goals the system proposed is based around the labo-

ratory coat, an article of clothing that is worn by most dentists. A number of small, lightweight

inclinometers are attached to the laboratory coat so that the dental practitioner can wear the pro-

totype without having sensors strapped or taped to his or her body. The inclinometer sensors are

SCA121T 2-Axis inclinometers manufactured by VTI Technologies. They are attached via unob-

trusive cables to a small analog-to-digital converter, which in turn is attached to an off-the-shelf

Pocket PC. This system is relatively inexpensive as compared to other technologies used for similar

applications. It is important to note that the inclinometers were affixed solely to the laboratory

coat, and therefore were not stationary on the body of the user. The coat had the ability to shift

and move during the testing of the system, and the relative location of the sensors varied from user

to user as only a single extra-large laboratory coat was used for all users, regardless of their size or

body type.

There are currently three inclinometers used in the prototype, one placed over each shoulder

blade, and one placed in the middle of the lower back (approximately over the L1 vertebra). The

placement of the inclinometers were determined as optimal through initial testing. The system

was first tested with only one inclinometer affixed on the middle of the back (approximately over

the T10 vertebra) with poor results, and through initial trial and error the placement of the three

inclinometers for the system was determined. Further testing of this system may reveal more

specified locations for higher accuracy, or the need for an additional inclinometer sensor affixed to

the head of the dental practitioner in order to measure additional aspects of the ergonomic position.

This may be accomplished by affixing an inclinometer to the required loupes (magnification glasses)
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Figure 30: Signal processing outline for posture classification.

of the dental practitioner. The design includes the planned use of an audio user interface, which

are anticipated to be unobtrusive to the dental practitioner. The output from the inclinometers

goes through a series of signal processing techniques to classify the data into one of a number of

predetermined posture positions.

The steps are outlined in Figure 5.2.30. First, the raw data (sampled at 20Hz) is converted from

voltage to the angles of the inclinometers. The sampling rate was selected based on initial testing,

which showed that 20 Hz captured enough information to accurately classify posture positions. An

increased sampling rate did not increase accuracy, and would potentially slow down the system.

The SCA 121T Series inclinometers record any change in incline relative to gravity by showing

a change in output voltage. This can be measured directly using a voltmeter and applying the

following formula to determine the angle, A, in Equation 5.2.26:

A =
sin−1(V −O)

S
(26)

where V is the voltage output from the inclinometer; O is the voltage output of the inclinometer

at 0 degrees and S is the sensitivity of the device (given by the manufacturer of the SCA121T

Series inclinometers). At the next stage, calibration, (as seen in the outline of the algorithm in
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Figure 5.2.30), after the angle is determined for the x and y axis for each inclinometer, the data is

calibrated, seen in Equation 5.2.27:

S′ij = Nij − Sij (27)

where Sij is the original sample for axis i and inclinometer j, Nij is the angle of the first sample

recorded in the nominally good position for axis i and inclinometer j, and S′ij is the resulting

calibrated position for that axis and inclinometer. Because the relative position of the coat and

user may change with each use, calibration is done so the movement is relative for each user from

session to session.

Next, a filter designed in the Fourier domain is applied in the form of a second order Butterworth

FFT filter with a cutoff frequency of 5Hz. A feature vector is created consisting of the filtered data

from the x and y axes from all three inclinometers.

After filtering, the sample data is classified using a k-NN algorithm. k-NN is a supervised

classifier, meaning it uses a set of labeled data representing the different classes (in this case, the

different posture positions) to classify new, unknown data. The k-NN algorithm will classify a new

data sample xi that has feature set where (xi1, xi2, ..., xi6) represents the values for x and y axis

for each of the 3 inclinometers (for a total of 6 features) for sample i. The classifier measures the

Euclidean distance between the new data sample and the labeled data, seen in Equation 5.2.28:

d(xi, x1) =
√

(xi1 − xl1)2 + (xi2 − xl2)2 + ...+ (xi6 − xl6)2 (28)

for all l labeled samples in the feature space. The k-NN algorithm then takes the k samples that

are closest, that is, those that have the smallest distance to the new unknown data sample. The

class to which a majority of those closest samples belong is then assigned to the new data sample.

To reduce ties, the k that is selected is usually an odd number. For this application, a number of

different k values were tested.
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To demonstrate the advantages of using a k-NN algorithm, the classifier was tested against a

number of other machine learning techniques. The techniques that have been tested are a feed-

forward back-propagation artificial neural network (ANN), AdaBoost with C4.5, a support vector

machine (SVM), and learning vector quantization (LVQ). These classification methods were chosen

because they are at the forefront of machine learning research and cover a broad range of diverse

theories and techniques. Another reason these particular techniques were chosen is because they

have a wide range of advantages and disadvantages; some have been proven to work well with the

classification of position and movement via on-body sensors, and some have not previously been

tested for this application. Testing shows that k-NN compares favorably with the range of machine

learning algorithms.

5.3 Results and Discussion

The system outlined above was tested on data generated by the posture measuring system during

posture-recording sessions with eleven different subjects (6 male subjects and 5 female subjects).

One of the goals of this research is to design a system that is customizable for each individual user.

For each subject, the laboratory coat was calibrated by having the subject sit in an ergonomically

correct position and recording one set of data from the inclinometers. All further data from the

system is recorded as the difference between the current posture position and the first calibration

data. The range of posture of the user is then measured by recording data while the users sit in an

ergonomically correct position and nominally harmful positions: leaning left, leaning right, leaning

forwards and backwards, and slouching. Given the initial calibration and identification of a normal

range of posture for the user, the processing techniques were used to infer the subject’s nominally

normal range of motion.

Figure 5.3.31 shows the data recorded from one user during a single session. There are three
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Figure 31: Calibrated and filtered output from three inclinometers showing change in x and y axis
of incline.

groupings of data from each inclinometer for each position held. The data is calibrated in relation

to the first recorded data sample from all three inclinometers while the user held the nominally good

position. This allows for the sensors to move from session to session without a negative impact on

classification accuracy. Figure 5.3.32 also shows the variation in data in each posture position. The

three lines show the change in incline from the correct posture position for the three inclinometers.

The variation in the data shows the movement and variation even while the subject is in one posture

position. The difference between posture positions varied greatly from one subject to another, and

the data recording the difference between the posture positions was not trivial. Because the system

will be used by dentists while they perform dental procedures, the goal is to create a system that

is robust to noise. The subjects who tested the system were instructed not to remain perfectly
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Figure 32: Calibrated and filtered output from three inclinometers during the time period when
the subject leaning to the left.

still while each posture position was recorded; instead they were encouraged to talk, move their

arms, etc. while holding each posture position. This movement within each position can be noted

by the variation of data points in Figure 5.3.32. Each user was instructed to move to the different

posture positions, and the system recorded their position for approximately one minute. Each user

determined by how to interpret each position, for example, when leaning “left” each person chose

how far to lean to the left and what angle their body would take (in addition to any movement

within that position over the minute-long recording session), so there was a great deal of variation

from user to user of the different nominal positions.

k-NN and the four other machine learning classification techniques were trained and tested with
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the data sets from all of the eleven users’ posture-measuring sessions, using 10-fold cross validation.

The results are presented in Table 5.3.5. The k-NN algorithm was tested with neighborhood sizes of

1, 2 and 3. The other machine learning techniques were tested as follows. A standard feed-forward

back- propagation neural network was used, with one hidden layer consisting of a number of hidden

nodes (the number of hidden nodes was varied in testing), and a bipolar sigmoid activation function

for both the hidden and output layers. The LVQ algorithm used was LVQ2.1, which uses two sets

of codebook vectors, with one associated with the “correct class for the current sample that is being

classified, and one associated with the incorrect class [52]. The AdaBoost technique was used with

a decision tree, C4.5, as the weak learning algorithm. For the SVM algorithm, the training data

was normalized, and a polynomial kernel was used, which allows for classifications that are not

linear.

As seen in Table 5.3.5, all of the classifiers that were tested performed relatively well, with the

LVQ algorithm having the lowest average accuracy at 92.31%. As mentioned earlier, all of the

methods were tested using 10-fold cross validation. This tests for the overfitting of classifiers. In

Table 5.3.5, the precision, recall, false positive rate and accuracy of the results are averaged over all

11 users. Table 5.3.5 also demonstrates the effect of changing the parameters of the ANN algorithm.

A wide range of hidden nodes, from 2 to 8, as well as 50 and 75, were used to test the accuracy

of the ANN classifier and the subsequent results show that for this application the neural network

is saturated. Changing either the number of hidden nodes or the learning rate has a dramatic

effect on the accuracy of the classifier. This demonstrates one of the main issues with parametric

classifiers; by choosing the incorrect parameters the accuracy of the system is compromised, but

finely tuning multiple parameters to create the most robust classifier is time intensive and may

result in overfitting. These results demonstrate that with the correctly chosen parameters, all

of the machine learning methods are relatively accurate in classifying different posture positions.
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The k-Nearest Neighbor algorithm, although more accurate than the majority of other machine

learning classifiers that were tested, was not statistically different than any other classifier. k-NN

does, however, have distinct advantages over the other techniques tested. k-NN has a very low

computational time, requires little to no training time, is simple and straightforward, is robust and

generalizable, and as shown here gives the same or better accuracy than a number of other machine

learning techniques.
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Table 5: Averaged Results Over All 11 Users

Machine Learning
Technique

Parameters Precision Recall False Positive Rate Accuracy

k-NN

k:
1 0.99 0.99 0.01 99.94%
2 0.99 0.99 0.01 99.92%
3 0.99 0.99 0.01 99.90%

ANN

Number
of Hidden
Nodes:

Learning
Rate:

2 0.10 0.63 0.62 0.10 61.69%
3 0.01 0.68 0.66 0.07 65.93%
3 0.10 0.77 0.75 0.06 74.81%
3 0.50 0.69 0.65 0.07 64.58%
4 0.10 0.87 0.76 0.03 85.11%
5 0.01 0.95 0.93 0.02 92.64%
5 0.10 0.88 0.87 0.03 86.84%
5 0.50 0.79 0.77 0.04 76.08%
6 0.10 0.89 0.88 0.02 88.08%
7 0.10 0.90 0.85 0.02 89.81%
8 0.01 0.99 0.99 0.01 99.84%
8 0.10 0.92 0.93 0.02 90.88%
8 0.50 0.82 0.80 0.04 80.47%
50 0.01 0.91 0.92 0.02 92.31%
50 0.10 0.95 0.95 0.01 95.33%
50 0.50 0.85 0.85 0.03 84.88%
75 0.10 0.96 0.96 0.01 95.96%

SVM – – 0.96 0.96 0.01 99.16%
LVQ – – 0.92 0.92 0.02 92.31%
AdaBoost with
C4.5

– – 0.99 0.99 0.01 99.73%
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CHAPTER 6 Conclusions and Proposed Future Work

6.1 Conclusions

Through the design and testing of the novel image processing techniques outlined in this dis-

sertation, the feasibility of a portable, automated computer-aided dental educational system in

demonstrated. One of the most challenging aspects of such as a system is the need for a complex

image processing system to interpret the images of the student’s work on the dental preparation.

Identifying and monitoring the progression of the drilled dental preparation from 2D color digital

images is not trivial. The primary problems to be solved in identifying and monitoring the prepa-

ration are determining the size, shape and location of the preparation, and assessing the depth and

smoothness of the preparation. To address these two issues, two novel image processing algorithms

have been designed and tested:

∙ To identify the location of the preparation in relation to the surface of the tooth, and to

monitor the progression of the size and shape of the preparation as it is being drilled, a novel

version of the Active Shape Model technique has been created. This algorithm, the Directed

Active Shape Modeling algorithm (DASM), can give quantitative feedback to the user about

the size, shape and relation to the surface of the tooth of the dental preparation.

∙ To monitor the depth and smoothness of the preparation, statistical measurements of the

pixels in the image are used as features for classification of the preparation as either being

within or outside of the range of acceptability for smoothness and depth. The results outlined

in the above chapters demonstrate the ability of the image processing and machine learning

84
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techniques to access accurately correctness of a dental preparation as it is being drilled.

Through the use of a computer-aided education system with image processing algorithms, den-

tal students could receive immediate auditory feedback while working on drilled preparations of

artificial teeth. This system would provide multiple benefits. It would help make more efficient use

of faculty time, allowing the instructor to focus on weaker students that need additional instruction

and allowing the more skilled students to advance on their own pace. Typically the instructor in-

spects the students’ work after the procedure is completed and points out any deficiencies. Provision

of immediate feedback would help the students to recognize the point within a procedure at which

a problem arises, and allow them to focus on enhancing their skills in that specific area. This will

improve the use of class time, require less faculty feedback, and enhance the self evaluation skills of

the students, impacting clinical treatment of patients. The system could allow the students to con-

tinue individual training with immediate and consistent feedback at times when the instructors are

not available (such as evenings and weekends), allowing them to develop their psychomotor skills

more quickly. The system would also help dental students develop the analytical skills needed for

assessing their own work, which is the foundation of correct clinical decision making when working

with live patients. The system could also be modified to be used in a clinical setting, increasing

the students’ and patients’ confidence level by providing a mechanism to prevent physical damage

to biological structures.

This paper also outlines the design and proof of concept of a portable posture-monitoring

system for dental students. By using machine learning techniques, change in body position can

be accurately classified using unobtrusive on-body sensors. By monitoring posture and providing

feedback in real-time, work-related musculoskeletal disorders may be prevented, lowering the risk

of injury for dental students and dental practitioners.
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6.2 Proposed Future Work

This dissertation provides the groundwork for the development of a comprehensive portable dental

educational system. Novel image processing algorithms are outlined, and the ability of these tech-

niques to accurately classify the size, shape, location and depth of drilled dental preparations is

demonstrated. The development of a portable posture monitoring system is also described, and its

accuracy is demonstrated as well. This work shows that the fundamental underlying techniques and

algorithms needed to create a comprehensive dental educational system are feasible. Additional

work needs to be done to complete the design and implementation of a fully functional dental

educational system prototype. The future work is listed as follows:

∙ The three machine learning techniques that were developed in this research (the DASM al-

gorithm for measuring the drilling of dental preparations, the use of statistical measurements

for the classification of depth and texture on tooth surfaces, and the development of the pos-

ture monitoring system) were tested and shown to be accurate for the specific applications

outlined in this dissertation. Further testing needs to be done for all three methods. Other

testing techniques, such as measuring the error in area instead of Euclidean distance with

the DASM testing, for example, could be used to further demonstrate the robustness of these

techniques. Additional testing for the DASM could be done using images of human teeth

instead of the plastic training teeth used in dental schools. In the testing done for this re-

search, there was no variation of color or texture for the tooth surfaces, or the synthetic gum

and mouth areas surrounding the teeth. More extensive testing could be done with images

of human teeth to test the robustness of the algorithm when variations in color and texture

were introduced. Further testing would also be needed for the image processing techniques

used to classify depth in color digital images, as outlined in Chapter 4.4.1. In the testing used
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for this dissertation, 75% of the images were used for training and 25% were used for testing.

Another testing metholodgy, such as 10-fold cross validation (used in this dissertation for the

testing of the DASM and the classification of carious regions on tooth surfaces), would be

more robust and may give a more comprehensive estimation of the accuracy of the image

procesing technique used to classify depth.

∙ The image processing techniques developed in this research could also be tested with images in

other medical applications, to demonstrate the usability of the methods in other applications

and further test their robustness.

∙ The majority of the future work for this project would entail the development of a compre-

hensive working prototype of the dental educational system. Hardware for a portable system

would be required, including a surgical camera that could be mounted on the loupes of a den-

tal student or practitioner, and give the system the “over-the-shoulder” view of the student’s

work.

∙ In addition to the integration of hardware, the different machine learning and image processing

techniques have to be integrated, and some need expansion. For example, the needs of a real-

time system would require that the DASM algorithm be expanded to included registration

of images (shown in previous work as an application of ASM algorithms [18]) to follow the

location of the tooth from image to image as the camera records the student’s work.

∙ After the different machine learning and image processing techniques were integrated so that

they could measure the change in size, shape, location, texture and depth of drilled dental

preparations from sequential digital images, a user interface component needs to be designed

to provide real-time informative audio feedback to the student. The input from the posture-
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monitoring aspect of the system would also be integrated in the user interface component,

to give real-time feedback on incorrect body positioning. With the audio-only interface of

the portable image-based educational system outlined in this research, the students using the

system would be able to work uninterrupted, not having to look away from their work as they

received informative audio feedback from the system. This is in comparison to the DentSim

system, where the student must look away from their work to get detailed information about

the progress of their work. Unlike DentSim, this system would allow students to immediately

associate feedback from the system with their work, instead of students relying on feedback

from a graphical representation of the tooth on a computer monitor. With this advantage,

the students would not develop a reliance on graphical feedback, and potentially develop their

self-assessment skills more quickly than students relying on the graphical feedback of existing

educational systems, such as DentSim.

∙ This user interface component would be the final major aspect of the system to be developed.

With the audio-only interface of the portable image-based educational system outlined in this

research, the students using the system would be able to work uninterrupted, not having to

look away from their work as they received informative audio feedback from the system. This

is in comparison to the DentSim system, where the student must look away from their work to

get detailed information about the progress of their work. Unlike DentSim, this system would

allow students to immediately associate feedback from the system with their work, instead

of students relying on feedback from a graphical representation of the tooth on a computer

monitor. With this advantage, the students would not develop a reliance on graphical feed-

back, and potentially develop their self-assessment skills more quickly than students relying

on the graphical feedback of DentSim.After the prototype is fully developed and integrated,



www.manaraa.com

89

comprehensive testing could begin, first with dental instructors to provide feedback on the

design of the user interface component and the accuracy of the image processing components.

∙ Testing would then continue with students in the VCU School of Dentistry, and comparison of

the effectiveness of the system to the DentSim system and the traditional training of students

on drilling dental preparations could be done. The quality of the students’ preparations and

the rate at which the quality of their preparations improved over the course of a semester

could be used as metrics for comparing the educational systems.

A fully realized prototype of the dental educational system described in this research would

address issues with existing computer-aided dental educational systems. The machine learning and

image processing methods developed and tested in this dissertation could also be used in other

medical applications as well, or other image applications where images need to be tracked over

time.
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